目成 发表于 2008-5-16 23:50:07

锥齿轮的非零变位啮合

    与圆柱齿轮一样,在许多情况下,锥齿轮必须变位。
    我曾经在小家电的传动机构设计中,有过选取10齿对10齿的锥齿轮副的经历。当时意识到两个齿轮都需要正变位,也采用当量齿轮的正变位的方法,勉强而为,做出3D模型,用CNC加工出电极,供以粉末冶金齿轮的模腔成型之用,但同时也发现了啮合不顺滑的问题。直到前个时期,才从球面渐开线入手,得到非零变位锥齿轮啮合副的3D参数模型。
    如下图示,两个齿数都是7,轴夹角为90度的直锥齿轮啮合状况:

蓝色线为节圆和分度圆,绿线为基圆。啮合区域限于两条绿线之间,由于没有变位,有效啮合区过小。而且,多会有过度曲线干涉的情况出现,如下图示:


将两个齿轮的变位系数加大到0.4,齿厚加宽到原来的1.07倍,便会得到下图的啮合状态:

蓝线为节圆,红线为分度圆,绿线为基圆。看得出,啮合区域增大了许多,并且齿顶的啮合点在有效啮合区之内(基圆之外),于是也就消除了过度曲线干涉的状况:







目成 发表于 2008-5-19 20:03:55

锥齿论与圆柱齿论不同:
1. 圆柱齿轮模数、齿数、螺旋角定下之后,基圆、分度圆就定了,变位系数的变化,会导致齿形从而中心距的变化;
2. 锥齿论相反,齿数、轴夹角定下来之后,节锥角就确定了,其他参数的变化,会影响基圆、分度圆的变化。

阿松 发表于 2008-5-20 20:27:56

楼主的研究相当不错,有空我好好研究研究.

阿松 发表于 2008-5-24 21:03:59

楼主,对于2楼,是否可以这样理解:
锥齿轮的轴交角相当于圆柱齿轮的中心距,这样圆柱齿轮和锥齿轮就一样了。轴交角不变,相当于圆柱齿轮的中心距不变,圆柱齿轮也可以是改变基圆和分度圆。各种形式的渐开线齿轮都是相通的。
对于1楼:
也可以这样想:轴交角不变,改变分度圆的压力角和模数,可以达到同样的效果,节圆上的齿厚和仅与模数有关。当然你的方法对于加工来说可能会更合理。

目成 发表于 2008-5-25 21:28:08

回复 4# 阿松 的帖子

版主,对于2楼,是的。

对于1楼,模数可以是个不能变的值,但大端直径会变。这也是锥齿轮与圆柱齿轮不同之处。

阿松 发表于 2008-5-28 11:16:46

可不可以这样:
圆柱齿轮上的所有参数在圆锥齿轮上都用角度来表示(包括模数)。齿厚也可以换算成角度来测量(我已推导出相关等式)。那齿轮的大小只是比例关系而已。

目成 发表于 2008-5-28 21:52:13

回复 6# 阿松 的帖子

愿闻其详!

阿松 发表于 2008-6-1 22:57:25

我只是相对于圆柱齿轮的公法线,做了一个锥齿轮的“公法角”。原理是一样的:
公式是(k-1)*pb+sb
k-跨测齿数
pb-节距
sb-基齿厚
我实际测量过,数据是对的,但公差范围还没用详细去想过。

反反 发表于 2024-9-1 11:47:08

我查了资料,圆锥齿轮的变位是改变了锥距,轴交角是没有变的
页: [1]
查看完整版本: 锥齿轮的非零变位啮合