机械必威体育网址

找回密码
注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8217 | 回复: 3
打印 上一主题 下一主题

51單片机pin腳說明﹗

[复制链接]
跳转到指定楼层
1#
发表于 2006-6-28 15:42:47 | 只看该作者 回帖奖励 | 倒序浏览 | 阅读模式
5 u5 i( g4 Z& z" T2 u# {
8 ]/ o# M- Z- B9 j ' G r5 |7 N9 D7 U+ L 3 S& g2 \" A- Y 4 S9 i! R, K# [& H6 y
L- X) l+ \' q3 c5 c! w
- O# h) q9 K& f9 z" X

引脚功能:

# ?; t, v3 g8 c+ y5 N/ `

MCS-51是标准的40引脚双列直插式集成电路芯片,引脚分布请参照----单片机引脚图:

6 A- K) |, u* j

l P0.0~P0.7 P0口8位双向口线(在引脚的39~32号端子)。

+ M* k, P. d: B3 v

l P1.0~P1.7 P1口8位双向口线(在引脚的1~8号端子)。

: r$ ~0 l' n s4 O6 c" A

l P2.0~P2.7 P2口8位双向口线(在引脚的21~28号端子)。

3 H/ i! e8 _# H7 T

l P3.0~P3.7 P2口8位双向口线(在引脚的10~17号端子)。

) c% j; Z2 q) ]6 S

这4个I/O口具有不完全相同的功能,大家可得学好了,其它书本里虽然有,但写的太深,对于初学者来说很难理解的,我这里都是按我自已的表达方式来写的,相信你也能够理解的。

! n3 @# {) h6 F! w. B% w" y! f8 n

P0口有三个功能:

' d8 x" r( p2 A) I. y4 B

1、外部扩展存储器时,当做数据总线(如图1中的D0~D7为数据总线接口)

. q4 h, u* @7 a) L7 Y. Q

2、外部扩展存储器时,当作地址总线(如图1中的A0~A7为地址总线接口)

7 `1 K' o" F* p+ l

3、不扩展时,可做一般的I/O使用,但内部无上拉电阻,作为输入或输出时应在外部接上拉电阻。

2 _. ^1 ?7 c( H# T5 T3 r1 R

P1口只做I/O口使用:其内部有上拉电阻。

# J: T+ Z5 e+ Y6 y- i# ~1 R7 o

P2口有两个功能:

. T+ [6 N% w" O7 B+ L

1、扩展外部存储器时,当作地址总线使用

( G1 \# D: `) U; I: p3 W; U

2、做一般I/O口使用,其内部有上拉电阻;

* I8 @+ V7 y, p/ k( A

P3口有两个功能:

1 m: @/ X- N0 E, ^2 t. J0 \ t" J

除了作为I/O使用外(其内部有上拉电阻),还有一些特殊功能,由特殊寄存器来设置,具体功能请参考我们后面的引脚说明。

- g' F; h( t' C1 m2 V

有内部EPROM的单片机芯片(例如8751),为写入程序需提供专门的编程脉冲和编程电源,这些信号也是由信号引脚的形式提供的,

9 d! A3 o5 B3 y. G' q

即:编程脉冲:30脚(ALE/PROG)

5 X } {6 f1 R6 S5 i

编程电压(25V):31脚(EA/Vpp)

) T7 w1 g9 v/ F& [" P

接触过工业设备的兄弟可能会看到有些印刷线路板上会有一个电池,这个电池是干什么用的呢?这就是单片机的备用电源,当外接电源下降到下限值时,备用电源就会经第二功能的方式由第9脚(即RST/VPD)引入,以保护内部RAM中的信息不会丢失。

1 y: _: P7 |! D0 R; [ P2 @" c

(注:这些引脚的功能应用,除9脚的第二功能外,在“新动力2004版”学习套件中都有应用到。)

: j$ n- I: q( C( N

在介绍这四个I/O口时提到了一个“上拉电阻”那么上拉电阻又是一个什么东东呢?他起什么作用呢?都说了是电阻那当然就是一个电阻啦,当作为输入时,上拉电阻将其电位拉高,若输入为低电平则可提供电流源;所以如果P0口如果作为输入时,处在高阻抗状态,只有外接一个上拉电阻才能有效。

# p* Y# U. S* F2 x/ j, n3 {

ALE 地址锁存控制信号:在系统扩展时,ALE用于控制把P0口的输出低8位地址送锁存器锁存起来,以实现低位地址和数据的隔离。参见图2(8051扩展2KB EEPROM电路,在图中ALE与4LS373锁存器的G相连接,当CPU对外部进行存取时,用以锁住地址的低位地址,即P0口输出。

7 z+ t$ u$ h# a, o1 N+ d

由于ALE是以晶振六分之一的固定频率输出的正脉冲,当系统中未使用外部存储器时,ALE脚也会有六分之一的固定频率输出,因此可作为外部时钟或外部定时脉冲使用。

: }" Z( l L8 ]$ p0 R3 q" E

PSEN 外部程序存储器读选通信号:在读外部ROM时PSEN低电平有效,以实现外部ROM单元的读操作。

9 N, j) ^; {2 F! k' m

1、内部ROM读取时,PSEN不动作;

6 p! v6 \4 t x1 G @

2、外部ROM读取时,在每个机器周期会动作两次;

; O- N" p. O: B C L

3、外部RAM读取时,两个PSEN脉冲被跳过不会输出;

+ `7 Q$ t, A% H6 W l

4、外接ROM时,与ROM的OE脚相接。

# a3 B7 ^. i0 _) ]

参见图2—(8051扩展2KB EEPROM电路,在图中PSEN与扩展ROM的OE脚相接)

$ l* X# k, f9 E: V

EA/VPP 访问和序存储器控制信号

# i+ q$ D6 Q$ a9 x( _7 p) P& k

1、接高电平时:

6 k& @% L0 u9 f

CPU读取内部程序存储器(ROM)

, V3 }) l7 i( d( A: ?

扩展外部ROM:当读取内部程序存储器超过0FFFH(8051)1FFFH(8052)时自动读取外部ROM。

. y& h9 p9 |5 Q8 \, c1 k f+ }

2、接低电平时:CPU读取外部程序存储器(ROM)。

* R3 ~" `2 z2 g; f4 p! p6 j( n

3、8751烧写内部EPROM时,利用此脚输入21V的烧写电压。

! C p0 \- J5 h2 g

RST 复位信号:当输入的信号连续2个机器周期以上高电平时即为有效,用以完成单片机的复位初始化操作。

. f& V% |; K' {) W9 H2 ~* M

XTAL1和XTAL2 外接晶振引脚。当使用芯片内部时钟时,此二引脚用于外接石英晶体和微调电容;当使用外部时钟时,用于接外部时钟脉冲信号。

VCC:电源+5V输入

- n) s O' }/ ?' l5 c

VSS:GND接地。

7 W- |, }) Y* s* j

各端口工作原理讲解

2 D9 U+ \6 d; F3 @. i

并行端口

, J$ k2 x8 m! O$ v- E& E% t" g

P0端口

u$ Y! v+ n8 c7 E4 h

总线I/O端口,双向,三态,数据地址分时复用,该端口除用于数据的输入/输出外,在8031单片机外接程序存储器时,还分时地输出/输入地址/指令。由Po端口输出的信号无锁存,输入的信息有读端口引脚和读端口锁存器之分。P0端口8位中的一位结构图见下图:

- }, S5 ~+ S6 p3 B; a

: j% W- ^6 O0 {# u5 u+ i

( l8 G1 E1 F# \" q


由上图可见,P0端口由锁存器、输入缓冲器、切换开关与相应控制电路、场效应管驱动电路构成。
在输出状态下,当切换开关MUX向下时,从内部总线来的数据经锁存器反相和场效应管T2反相,输出到端口引脚线上。此时,场效应管T1关断,因而这种输出方式应为外接上拉电阻的漏极开路式。当切换开关MUX向上时,一位地址/数据信号分时地输出到端口线上。此外,由T1、T2的通断组合,形成高电平、低电平与高阻浮动三态的输出。
在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,Q=1,场效应管T2开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电乎还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,Q=0,场效应管T2截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:为此,8031单片机在对端口P0一P3的输入操作上,有如下约定:凡属于读-修改-写方式的指令,从锁存器读入信号,其它指令则从端口引脚线上读入信号。
读-修改-写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读--修改-写指令的例子。

9 w" d7 a, y! T; x( z* R" s" o+ {- M g. A, G9 R# |& L7 q: B- ^0 w. ^# }1 o8 T: j' S$ }2 P& f8 J3 X- z$ m7 {& r3 }' `7 i. B7 [+ R5 N& Y' j, X t& v9 ?( B7 c4 ?6 g; h" x) E* F. w9 f N) Z( F6 u7 [) V+ b; z6 x/ r. _! a; Q% R7 X6 D+ V- e+ y- @& J. P5 W4 d) Z9 k2 O' [0 w' s2 J3 J& e$ x( \! `( f* H# V- E6 L$ f! b f+ [2 v! T- Y( `: P9 |$ Q: Z; ]9 d: b# E: y9 J2 y9 W6 u }/ {) d ?! f8 e* v; V7 M6 M' p, b( z* k+ k q
ANL P0,#立即数 0→立即数P0
ORL P0,A 0→AP0
INC P1 1+1→P1
DEC P3 ;P3-1→P3
CPL P2 ;P2→P2
' X1 Z3 `. n- |" d! r

这样安排的原因在于读-修改-写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因而使原端口的状态被读错。
P0端口是8031单片机的总线口,分时出现数据D7一D0、低8位地址A7一AO,以及三态,用来接口存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。

0 n7 X! B8 M' r3 H; | e

P1端口:

" X6 n1 [* V' d, [5 I

通用I/0端口,准双向静态口。输出的信息有锁存,输入有读引脚和读锁存器之分。P1端口的一位结构见下图. 由图可见,P1端口与P0端口的主要差别在于,P1端口用内部上拉电阻R代替了P0端口的场效应管T1,并且输出的信息仅来自内部总线。由内部总线输出的数据经锁存器反相和场效应管反相后,锁存在端口线上,所以,P1端口是具有输出锁存的静态口。
由下图可见,要正确地从引脚上读入外部信息,必须先使场效应管关断,以便由外部输入的信息确定引脚的状态。为此,在作引脚读入前,必须先对该端口写入l。具有这种操作特点的输入/输出端口,称为准双向I/O口。8031单片机的P1、P2、P3都是准双向口。P0端口由于输出有三态功能,输入前,端口线已处于高阻态,无需先写入l后再作读操作。

( p. }5 d; b, o( u) c4 M9 H

5 {( g$ e$ ]. m


单片机复位后,各个端口已自动地被写入了1,此时,可直接作输入操作。如果在应用端口的过程中,已向P1一P3端口线输出过0,则再要输入时,必须先写1后再读引脚,才能得到正确的信息。此外,随输入指令的不同,H端口也有读锁存器与读引脚之分。
Pl端口是803l单片机中唯一仅有的单功能I/O端口,并且没有特定的专用功能,输出信号锁存在引脚上,故又称为通用静态口。

" |3 c' U7 {5 D" C- t k9 i

P2端口:
P2端口的一位结构见下图:

& O* v* t) B' P8 f" S

8 e, ^, U- u: ]- I

由图可见,P2端口在片内既有上拉电阻,又有切换开关MUX,所以P2端口在功能上兼有P0端口和P1端口的特点。这主要表现在输出功能上,当切换开关MUX向左时,从内部总线输出的一位数据经反相器和场效应管反相后,输出在端口引脚线上;当MUX向右时,输出的一位地址信号也经反相器和场效应管反相后,输出在端口引脚线上。
由于8031单片机必须外接程序存储器才能构成应用电路,而P2端口就是用来周期性地输出从外存中取指令的地址(高8位地址),因此,P2端口的切换开关MUX总是在进行切换,分时地输出从内部总线来的数据和从地址信号线上来的地址。因此P2端口是动态的I/O端口。输出数据虽被锁存,但不是稳定地出现在端口线上。其实,这里输出的数据往往也是一种地址,只不过是外部RAM的高8位地址。
在输入功能方面,P2端口与P0和H端口相同,有读引脚和读锁存器之分,并且P2端口也是准双向口。
可见,P2端口的主要特点包括:
①不能输出静态的数据;
②自身输出外部程序存储器的高8位地址;
②执行MOVX指令时,还输出外部RAM的高位地址,故称P2端口为动态地址端口。

P3端口:
双功能静态I/O口P3端口的一位结构见下图。


& t8 X9 I1 O+ Q

由上图可见,P3端口和Pl端口的结构相似,区别仅在于P3端口的各端口线有两种功能选择。当处于第一功能时,第二输出功能线为1,此时,内部总线信号经锁存器和场效应管输入/输出,其作用与P1端口作用相同,也是静态准双向I/O端口。当处于第二功能时,锁存器输出1,通过第二输出功能线输出特定的内含信号,在输入方面,即可以通过缓冲器读入引脚信号,还可以通过替代输入功能读入片内的特定第二功能信号。由于输出信号锁存并且有双重功能,故P3端口为静态双功能端口。

@# Y: }6 O! X! w7 K3 r' r0 u

P3口的特殊功能(即第二功能):

9 E( q! {, P, Q7 o# K* _& P# ]# D% l3 ^' p* q2 {0 R/ o( b3 r2 w7 i! w9 @4 L. k( k3 @% H; M% S) j" A( b! T( k1 t+ R1 g2 z6 z8 k1 G3 j. w% L8 ^4 @: I1 y; ]0 Q7 g" T! c- _$ ?. ~: i$ ~& ^2 O: t8 T) E8 H* `2 N3 I6 b9 |& L6 K5 w+ z# X: k& @8 m2 z# \* w: h U0 u( Y7 P2 L5 j% n, S+ L* s7 {. G5 V0 i. x& k" p2 X+ k: ]) \3 a; b9 j1 |+ @: \: L" C' t0 O3 q7 h( |0 v' G2 P% j; I* T& f f% q$ W2 t6 x4 J6 \% `2 J! j* R! f# g$ h, i7 @; s {" U/ O2 m+ V4 h# D! Q/ B; {$ K: J; e! r/ J+ P( F6 o8 n: y% ] r- y5 G7 @) N. _) d8 t5 E& {( r7 q; e; H. I: Q Q# M: c: O# W( N% X3 u! R1 X5 p# }1 {; f! X m. F; {4 b3 T, V1 h% F6 f' t7 A& x7 k' F) j& k8 f1 D) P# F* o( B# Y c1 A4 | ?: W, {; |9 L( F* q' w `2 m) q1 o) x2 _1 I: v2 h3 D" I2 Q& y* c Q1 Z3 I# }7 A+ X; n: E# q8 X4 K5 N5 Y: |8 q3 I/ [$ Y1 V; I; |* {2 ~# d( O' R7 d5 ^' }% G' @6 E2 f5 b! P3 L! @* e4 t' _7 Z7 E3 s$ c5 Z5 T& _" B' p- Y! B c' |3 C" E) ^, E4 V! I
, o- x$ \5 B: ], A( B* D
口线
' v4 L& u$ C/ t. Y X; c7 E
第二功能
8 @% z! n1 A3 G# a c C
信号名称
* S, Y7 r' P# [
P3.0
RXD 串行数据接收
% P r9 @% z; M6 m
P3.1
TXD 串行数据发送
) Y4 K( z& A) \: W' F
P3.2
INT0 外部中断0申请
C; h5 B5 }- P1 t/ }
P3.3
INT1 外部中断1申请
$ C) ?% O. K1 o. ]- ~7 v* J4 d' t
P3.4
T0 定时器/计数器0计数输入
$ w6 _$ D& }5 E. Y
P3.5
T1 定时器/计数器1计数输入
7 T/ X4 u) \( H, M/ Q8 ~
P3.6
WR 外部RAM写选通
) v2 m* C5 E" D% R% P- F
P3.7
RD 外部RAM读选通
, \* }) O5 i5 \ z4 \" e& r. ^

使P3端品各线处于第二功能的条件是:

) n" X2 |: f O( e9 i- m- Y

1\串行I/O处于运行状态(RXD,TXD);

8 L) Q1 J& u# r+ B' z) v9 L

2\打开了处部中断(INT0,INT1);

2 m2 E; k! o+ z* ~

3\定时器/计数器处于外部计数状态(T0,T1)

! Q" L5 |, |) s) h# _

4\执行读写外部RAM的指令(RD,WR)

+ `* i7 R. ^9 w/ y) e

在应用中,如不设定P3端口各位的第二功能(WR,RD信叼的产生不用设置),则P3端口线自动处于第一功能状态,也就是静态I/O端口的工作状态。在更多的场合是根据应用的需要,把几条端口线设置为第二功能,而另外几条端口线处于第一功能运行状态。在这种情况下,不宜对P3端口作字节操作,需采用位操作的形式。

: i1 M$ _& {1 B

端口的负载能力和输入/输出操作:

+ m- ~# c$ }) b" A; p

P0端口能驱动8个LSTTL负载。如需增加负载能力,可在P0总线上增加总线驱动器。P1,P2,P3端口各能驱动4个LSTTL负载。
前已述及,由于P0-P3端口已映射成特殊功能寄存器中的P0一P3端口寄存器,所以对这些端口寄存器的读/写就实现了信息从相应端口的输入/输出。例如:
MOV A, P1 ;把Pl端口线上的信息输入到A
MoV P1, A ;把A的内容由P1端口输出
MOV P3, #0FFH ;使P3端口线各位置l

6 ]' A' |- G6 k: w" T, e9 S

串行端口:
MCS-51系列单片机片内有一个串行I/O端口,通过引脚RXD(P3.0)和TXD(P3.1)可与外设电路进行全双工的串行异步通信。

: X# N, ^3 W$ E" E) Y

1.串行端口的基本特点
8031单片机的串行端口有4种基本工作方式,通过编程设置,可以使其工作在任一方式,以满足不同应用场合的需要。其中,方式0主要用于外接移位寄存器,以扩展单片机的I/O电路;方式1多用于双机之间或与外设电路的通信;方式2,3除有方式l的功能外,还可用作多机通信,以构成分布式多微机系统。
串行端口有两个控制寄存器,用来设置工作方式、发送或接收的状态、特征位、数据传送的波特率(每秒传送的位数)以及作为中断标志等。
串行端口有一个数据寄存器SBUF(在特殊功能寄存器中的字节地址为99H),该寄存器为发送和接收所共同。发送时,只写不读;接收时,只读不写。在一定条件下,向阳UF写入数据就启动了发送过程;读SBUf就启动了接收过程。
串行通信的波特率可以程控设定。在不同工作方式中,由时钟振荡频率的分频值或由定时器Tl的定时溢出时间确定,使用十分方便灵活。

/ C. _( L9 p, |$ h; X6 t' }+ ^5 i

2.串行端口的工作方式
①方式0
8位移位寄存器输入/输出方式。多用于外接移位寄存器以扩展I/O端口。波特率固定为fosc/12。其中,fosc为时钟频率。
在方式0中,串行端口作为输出时,只要向串行缓冲器SBUF写入一字节数据后,串行端口就把此8位数据以等的波特率,从RXD引脚逐位输出(从低位到高位);此时,TXD输出频率为fosc/12的同步移位脉冲。数据发送前,仅管不使用中断,中断标志TI还必须清零,8位数据发送完后,TI自动置1。如要再发送,必须用软件将TI清零。
串行端口作为输入时,RXD为数据输入端,TXD仍为同步信号输出端,输出频率为fosc/12的同步移位脉冲,使外部数据逐位移入RxD。当接收到8位数据(一帧)后,中断标志RI自动置。如果再接收,必须用软件先将RI清零。
串行方式0发送和接收的时序过程见下图。
②方式1

$ V8 a& u9 D+ Z3 [( }( K

- a3 j2 u8 L3 N3 t4 q" A- G

10位异步通信方式。其中,1个起始位(0),8个数据位(由低位到高位)和1个停止位(1)。波特率由定时器T1的溢出率和SMOD位的状态确定。
一条写SBUF指令就可启动数据发送过程。在发送移位时钟(由波特率确定)的同步下,从TxD先送出起始位,然后是8位数据位,最后是停止位。这样的一帧10位数据发送完后,中断标志TI置位。
在允许接收的条件下(REN=1),当RXD出现由1到O的负跳变时,即被当成是串行发送来的一帧数据的起始位,从而启动一次接收过程。当8位数据接收完,并检测到高电乎停止位后,即把接收到的8位数据装入SBUF,置位RI,一帧数据的接收过程就完成了。
方式1的数据传送波特率可以编程设置,使用范围宽,其计算式为:
波特率=2SMOD/32×(定时器T1的溢出率)
其中,SMOD是控制寄存器PCON中的一位程控位,其取值有0和l两种状态。显然,当SMOD=0时,波特率=1/32(定时器Tl溢出率),而当SMOD=1时,波特率=1/16(定时器T1溢出率)。所谓定时器的溢出率,就是指定时器一秒钟内的溢出次数。波特率的算法,以及要求一定波特率时定时器定时初值的求法,后面将详细讨论。 ·
串行方式1的发送和接收过程的时序见下图。
③方式2,3
11位异步通信方式。其中,1个起始位(0),8个数据位(由低位到高位),1个附加的第9位和1个停止住(1)。方式2和方式3除波特率不同外,其它性能完全相同。方式2,3的发送、接收时序见下图。
由图可见,方式2和方式3与方式l的操作过程基本相同,主要差别在于方式2,3有第9位数据。

( r5 X+ h/ [7 u$ S n! Y

9 _9 \% m8 d0 z


发送时,发送机的这第9位数据来自该机SCON中的TB8,而接收机将接收到的这第9位数据送入本机SCON中的RB8。这个第9位数据通常用作数据的奇偶检验位,或在多机通信中作为地址/数据的特征位。
方式2和方式3的波特率计算式如下:
方式2的波特率=2SMOD/64×fosc
方式3的波特率=2SMOD/32×定时器T1的溢出率
由此可见,在晶振时钟频率一定的条件下,方式2只有两种波特率,而方式3可通过编程设置成多种波特率,这正是这两种方式的差别所在。
3.串行端口的控制寄存器
串行端口共有2个控制寄存器SCON和PCON,用以设置串行端口的工作方式、接收/发送的运行状态、接收/发送数据的特征、波特率的大小,以及作为运行的中断标志等。

; h) v5 @) T! r2 G( V- ^: g- e: y* t

( }3 s! ]; Y# j# g8 D2 ~7 R

) {/ D# a. e7 r" x. O3 {8 s


% l% {. x V; y6 O) H% y! v" Z9 N

; ?* o& j% d( k4 R! a) @8 L
2#
发表于 2006-9-16 20:13:23 | 只看该作者

Re: 51單片机pin腳說明﹗

看不到图片,楼主可否重新发一下
3#
发表于 2007-2-5 14:14:05 | 只看该作者

Re: 51單片机pin腳說明﹗

我这里都有的,呵或# [- q+ R" \. k+ m8 F1 o# f$ Z2 h
4#
发表于 2007-2-5 18:43:17 | 只看该作者

Re: 51單片机pin腳說明﹗

我这也看不到图片,不过我从文字部份已经知道了:)
; T% x0 I* {9 |1 i* x* z都是51的最基础的知识,呵呵~~~
您需要登录后才可以回帖 登录| 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址(京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号)

GMT+8, 2025-1-25 22:48, Processed in 0.066846 second(s), 13 queries , Gzip On.

Powered byDiscuz!X3.4Licensed

? 2001-2017Comsenz Inc.

快速回复 返回顶部 返回列表