|
德国西门子公司完成了涡轮叶片的3D打印,并将此叶片安装在发动机中进行了满负荷运转试验,由于叶片工艺复杂、加工精度要求高、制造难,价格昂贵,这次用3D打印叶片标志着3D打印制造的技术实现了又一次重大突破。 : V" `" Q- f) b- f, ~
近年来3D打印技术为人们所熟悉,它又被称为“快速成型技术”或“增材制造技术”,诞生于上世纪80年代末,主要是以数字模型文件为基础,通过材料叠层添加构造三维物体的变革性、数字化增材制造技术。并逐渐成为一种新兴的制造方式,很多国家,包括美国、德国等都高度重视并积极推广应用该技术。德国西门子公司近日完成了涡轮叶片的3D打印,并将此叶片安装在发动机中进行了满负荷运转试验,由于叶片工艺复杂、加工精度要求高、制造难,价格昂贵,这次用3D打印叶片标志着3D打印制造的技术实现了又一次重大突破。, I8 h2 U. a- J! {, s( m& [
+ z$ m6 o% ~. i& H* Y! j6 r
西门子此次制造的叶片是通过在CAD中分层构建模型,然后分层制作再进行组合,完成零件的制造。材料使用的是多晶镍合金的粉末,这种材料能够耐高温高压,承受旋转时产生的巨大离心力。在试验中,转速高达1.3万转/分钟,时速高达1600千米,温度超过一千度,叶片上所承受的离心力超过10吨。
1 O5 R& A# p3 d7 s" S: _! ^, ^# r' N8 D
在航空发动机中叶片的加工工作量约占整个加工工作量的30%一40%。发动机叶片结构复杂,叶片型面为空间列表曲面。叶片在工作中要承受复杂应力和微震动,这样对叶片材料、机械加工工艺、热处理及表面喷涂工艺都有极高的质量要求。加上航空发动机研制过程中为了满足设计要求,叶片的设计改动比较频繁,这对叶片的加工工艺和加工进度提出了特殊要求。而叶片加工的周期和质量直接影响到航空发动机的研制周期。
9 P3 v5 E! v3 H0 E/ D" I/ w# a; M9 B0 ?' y; D4 a
据西方资料使用3D打印技术生产航空发动机将有望降低50%的制造成本,并大幅缩短生产和交付时间。过去通过传统工艺研制涡轮叶片的样件需要3年的时间,而如果采用了3D打印技术则仅需短短9周,和过去相比为整个供应链节约了70%的时间。
2 \ h# b" `7 v" ~8 X, r8 a/ A( r2 Q) g/ p
与传统工艺模式不同,3D打印技术集概念设计、技术验证与生产制造于一体。这必将极大缩小航空产品从“概念”到“定形”的时间差,从而加快航空产品的更新周期。传统的航空产品生产中,很多产品通过切割、机械加工等工序,除去多余部分形成零部件,然后被拼装、焊接成产品。这一过程中,将有90%的原材料被浪费掉;与传统工艺不同3D打印技术的航空产品的生产过程中,可直接根据计算机图形数据通过层层增加材料的方法“打印”出航空产品,按需取材,整个生产过程几乎没有浪费。
" S1 L/ d3 j" \+ Z4 v2 j- H/ ?# `/ d0 r* A% m) M5 h1 V# q- ]
: I2 Z5 C" Q) z8 b6 _8 \
. V2 n# m- e$ t |
|