传统SLA技术的固化受光引发剂种类、光引发剂浓度、光照强度和照射时间等条件的影响,一般引发剂浓度越高,光强度越高固化速度越快。光的强度会随着射入物体的深度逐渐降低,只有靠近照射面的一小部分会固化的相对均匀和彻底,理论上打印的精度完全取决于具有足够能量激活引发剂的光能够穿透多深的树脂。理论上讲,只要提高引发剂浓度和光强就可以加快打印速度,但因为固化反应发生在树脂与透光板的交界面上,过快的反应速度很容易使制件和透光板粘在一起,导致打印失败。 在此前,解决这一问题的方法主要是降低固化速度,在树脂完全固化之前移动底板,使部分固化的树脂与透光板脱离接触,新的低粘度树脂会补充到原来的位置,然后再开始下一层的固化。但这样一来,打印速度就无法有效提高了。 而在新的CLIP系统中,研究者们通过固化-阻聚效应的平衡巧妙地解决了这个问题。CLIP底面的透光板采用了透氧、透紫外光的特氟龙材料(聚四氟乙烯),而透过的氧气进入到树脂液体中可以起到阻聚剂的作用,阻止固化反应的发生。氧气和紫外光照的作用在这个区域内会产生一种相互制衡的效果:一方面,光照会活化固化剂,而另一方面,氧气又会抑制反应,使得靠近底面部分的固化速度变慢(也就是所谓的“dead zone”)。当制件离开这个区域后,脱离氧气制约的材料可以迅速地发生反应,将树脂固化成型。在传统的SLA技术中,抑制固化的氧气本来是人们避之不及的存在,但是经过巧妙设计之后,它反而成了提高打印效率的帮手,这也算是一种相当戏剧性的逆转。 除了快,CLIP系统也提高了3D打印的精度,而这一点的关键还也在“死区”上。传统的SLA技术在打印换层的时候需要拉动尚未完全固化的树脂层,为了不破坏树脂层的结构,每个单层切片都必须保证一定的厚度来维持强度。而CLIP的固化层下面接触的是液态的“死区”,不需要担心它与透光板粘连,因此自然也更不容易被破坏。于是,树脂层就可以被切得更薄,更高精度的打印也就能够实现了。 这样的方法听起来很简单,不过为了让它顺利工作,研究人员们也进行了相当复杂的计算与调试。通过合适的打印条件和原料液配方控制,困扰3D打印技术已久的高速连续化打印问题在CLIP技术中被完全克服,这是高分子学科工程史上一次融合应用的创举,登上《科学》封面确实当之无愧。
|