|
本帖最后由 陈小黑 于 2015-1-9 22:37 编辑
$ {5 J; F4 [4 X! x/ H0 m# \1 J s0 e" L/ ?
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar
(4.42 MB, 下载次数: 6)
' [& C( h, ^% v
6 Z2 t0 v; H, B7 z
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar
(3.39 MB, 下载次数: 6)
$ j& b, H4 u- l U8 J$ D
% c* L+ `( \, R
目录( }5 e9 ?" I0 S; J$ I$ y5 }
, H P( Q) B9 q( ^Contents
2 W. i# Z' ~) x( X6 E) K% P b
0 i5 \7 y" }8 q1 B5 i, ~0 C+ ]Preface page xvii# o( H- Z) Q1 O( G& T8 G9 W
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
& p3 ?: L/ e" V8 w% |1 h1.1 Viscoelastic Phenomena 1
% }: J+ e! Q3 H$ L, l7 I1.2 Motivations for Studying Viscoelasticity 3 L" l7 a- V, O* B' a1 B
1.3 Transient Properties: Creep and Relaxation 3
, L2 _6 O9 I6 J1.3.1 Viscoelastic Functions J (t), E(t) 3: H$ _7 e5 o( y W
1.3.2 Solids and Liquids 71 I1 P+ z' ] n7 D
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8! r7 I" e |) P
1.5 Demonstration of Viscoelastic Behavior 10, s* d+ e# a) Q2 i$ k; O* b
1.6 Historical Aspects 10
* u$ t/ [- Y' \7 g2 E) X1.7 Summary 114 u7 ?7 G( I1 P0 I+ f& Y- Q, H
1.8 Examples 11
! V% m7 \5 P. c' K6 u$ L; a& B0 }% h1.9 Problems 12
) q9 W3 R3 y/ G4 \, H0 M' x1 sBibliography 122 k5 ^ D% c' `/ A
( l9 i8 s W. ^; T, N5 f. L* u% R8 I* p) ~, l; F6 g0 [
" L& Q: ^# k* p E' A7 e; W$ |9 i8 Z$ ?( B. U
- Y6 b" B& U3 |0 w' C- z0 t, x5 f- q& [5 k& [! Z2 c
2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
: I& h, d9 m. _( n/ d' P5 O4 i2.1 Introduction 14
8 K. J5 \4 u* h3 A2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
& j5 [6 x$ e9 O+ Q: o2.2.1 Prediction of Recovery from Relaxation E(t) 14) t: S8 ]" b6 Y9 u, I! U j5 b! L7 M- c
2.2.2 Prediction of Response to Arbitrary Strain History 15
% l* W$ ]7 ]0 q; l; d) L' t) r6 u2.3 Restrictions on the Viscoelastic Functions 178 w& B7 r% @" U% _8 [
2.3.1 Roles of Energy and Passivity 17' P/ l: E7 P: v/ L3 Z! Z/ d
2.3.2 Fading Memory 18- [* b$ R4 H7 k' M% l3 f
2.4 Relation between Creep and Relaxation 19
6 T- F# D; e: @# |- |" I2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19+ _5 S8 R0 `; ~/ B1 X
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
2 `" y) X! I9 B1 r* E2.5 Stress versus Strain for Constant Strain Rate 202 e6 f: T, D- f! v* O: p2 g5 Z6 J
2.6 Particular Creep and Relaxation Functions 21
) O$ z% U+ t3 g) B# c2 H' {0 Y2.6.1 Exponentials and Mechanical Models 21
6 R2 x9 }" g; [4 U% S2.6.2 Exponentials and Internal Causal Variables 26/ S1 q3 }; w' J+ l, Z1 x1 Z: c
2.6.3 Fractional Derivatives 27, e, E3 ?& d. \' r' x9 J8 O
2.6.4 Power-Law Behavior 28
' g1 c. |3 P* y0 V. t b2.6.5 Stretched Exponential 29* _8 t$ L* j1 w' k2 I2 P
2.6.6 Logarithmic Creep; Kuhn Model 29
/ u; i7 M- j/ v1 H! J) X( _4 l1 W2.6.7 Distinguishing among Viscoelastic Functions 30
: q# p3 G5 ?& y/ Y; R7 e4 E r2.7 Effect of Temperature 30
; [4 ^, o4 s9 q& a. ?4 ~2.8 Three-Dimensional Linear Constitutive Equation 33
6 t/ k, E) }, z& f3 K H. h2.9 Aging Materials 35
5 h1 u9 s2 v9 b" X1 F2.10 Dielectric and Other Forms of Relaxation 35
; R2 E- L7 }1 q' A9 \8 {2.11 Adaptive and “Smart” Materials 36
5 E7 d3 a2 }$ X: N7 Z! L, x9 g/ q2.12 Effect of Nonlinearity 379 w+ N- [! M Y2 `' f
2.12.1 Constitutive Equations 372 u8 D# s. N* h3 T& n& o; g& }! x( v
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40& X& P6 M/ ~# E7 q2 g3 A
2.13 Summary 43
6 l: a& A. c! y" G2.14 Examples 439 C0 v6 T, {' p; Z$ I
2.15 Problems 51( Z( q7 x+ U1 b/ g" J
Bibliography 52
) j% W! e0 h" { v
! l9 z6 e0 _3 l. Z$ ]- z! q- g6 G( f- `( j; X" A
7 [2 X) k! {# m s" L
5 y; [5 \9 F H" @* H
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
# m9 f$ f9 u! B. o% o' l3.1 Introduction and Rationale 553 ~% j5 f' o& j" O# J
3.2 The Linear Dynamic Response Functions E∗, tanδ 56; ]+ K5 r. n, r5 L
3.2.1 Response to Sinusoidal Input 57$ V# u. O5 ?" a. `/ |
3.2.2 Dynamic Stress–Strain Relation 593 }. n! h% Q8 l B( h, [1 l& C6 w
3.2.3 Standard Linear Solid 622 i* t U% W: F: y! Y) N4 ]
3.3 Kramers–Kronig Relations 63, b& f. Q$ [3 [& }" w+ \3 p- M
3.4 Energy Storage and Dissipation 65
2 f- b8 g: \0 u7 q# w @3.5 Resonance of Structural Members 670 f v* u9 L9 z! q$ T( j( w9 \
3.5.1 Resonance, Lumped System 67' ]8 Y: B( R! `
3.5.2 Resonance, Distributed System 713 b8 s. J4 B; ~/ U; E
3.6 Decay of Resonant Vibration 74
& {) A6 m* N& ]* G9 e @$ K3.7 Wave Propagation and Attenuation 77
: P: E- z, q1 _* ~- j3.8 Measures of Damping 79
1 m( K4 g0 J. _+ d" I' T2 y, N( Z3.9 Nonlinear Materials 79
( ]. T0 v9 a2 I$ g3.10 Summary 81
- Q" e8 |5 a( ` V2 Q3.11 Examples 813 B" H7 c: S! O- I
3.12 Problems 880 s: `' }8 t2 n6 i8 ~
Bibliography 89# i, T# e( X! i5 V' t
|' |' W7 _. k' l9 ^- P
5 J# v8 g' P9 D5 s% _: r3 P
& Z0 ?5 c+ v' H/ B* k+ {4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91: G7 X# M2 W4 B1 T
4.1 Introduction 91# n: U. q2 R x4 \/ g
4.2 Spectra in Linear Viscoelasticity 92, a( y1 f/ G- l+ M2 O( Z7 S
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
/ e# N- v! y- W4.2.2 Particular Spectra 93
) S5 e+ k2 l1 `- q' [, E! [3 ~5 l4.3 Approximate Interrelations of Viscoelastic Functions 95
; M; j7 X9 K, m" P: I- e3 r4.3.1 Interrelations Involving the Spectra 95
! p7 ]8 o, B; L/ l( f7 G; d4.3.2 Interrelations Involving Measurable Functions 98+ z; _2 M2 \. q- R0 X( Y, l7 T
4.3.3 Summary, Approximate Relations 101
; x/ c7 A8 g5 s* T. k' l4.4 Conceptual Organization of the Viscoelastic Functions 101
$ B5 {. a5 ?4 a' Q5 L9 p* A4.5 Summary 104
E6 t3 i" y6 z' H: g0 ?* P/ x# b4.6 Examples 104 m/ z. V4 x* N2 V4 `$ Z& u: {
4.7 Problems 109
7 X/ N. C' c9 V$ p( F8 I1 E2 UBibliography 109: M6 \* F" E: i2 H: [8 u9 Y
- M* V7 L h3 Z! k3 `) R/ X% l9 V1 Z4 A2 {
1 M$ c+ e: w8 J& }) I {$ c% X5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111: v' M$ T5 F( u$ K( ~9 q
5.1 Introduction 111. v6 }& l3 I6 n( X1 f) r; O
5.2 Three-Dimensional Constitutive Equation 111
) E; j* ^/ m. u; }9 S+ w C5.3 Pure Bending by Direct Construction 112
! [; Q8 X2 d* e3 ?0 U+ r1 x+ W7 n5.4 Correspondence Principle 1147 O7 h4 {, I J/ R
5.5 Pure Bending by Correspondence 116
& r. a" w: [3 S9 p5.6 Correspondence Principle in Three Dimensions 116
/ {: a4 T7 m& {, A) |/ O5.6.1 Constitutive Equations 1162 _$ N& I, r$ O/ z% o
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
% z" k5 E- u8 m/ R$ d0 m5.6.3 Viscoelastic Rod Held at Constant Extension 119
: [- \' n- a% P# [* }5.6.4 Stress Concentration 1192 Q7 E2 Z2 `: |3 s% ~1 g6 p
5.6.5 Saint Venant’s Principle 1203 V4 d/ k3 ?3 {
5.7 Poisson’s Ratio ν(t) 1217 Y3 H7 ]0 a7 a9 O3 R7 o. r; ^: Z
5.7.1 Relaxation in Tension 121
, d" L7 w! x8 z# q/ L( Y$ q: k5.7.2 Creep in Tension 123$ b* O$ F' M' S
5.8 Dynamic Problems: Effects of Inertia 124
: M7 _- w! o# g5.8.1 Longitudinal Vibration and Waves in a Rod 124/ Z9 H2 `! S; B
5.8.2 Torsional Waves and Vibration in a Rod 1253 N, E0 s# j. ]6 ?$ M9 p
5.8.3 Bending Waves and Vibration 1283 O3 R6 _) I! b; i5 t1 {% U& ^( Y
5.8.4 Waves in Three Dimensions 1295 q( V: S- K6 p$ }: h4 u% ]5 l0 `
5.9 Noncorrespondence Problems 131
$ K; c$ L) c. ?0 ]: F" S V5 Q5.9.1 Solution by Direct Construction: Example 131
3 L4 E! k9 l+ j7 Z5.9.2 A Generalized Correspondence Principle 132, N* t- N3 ?& [9 C6 S: o' Q/ Q
5.9.3 Contact Problems 132
- X1 H" ]! s5 R2 p5 r5.10 Bending in Nonlinear Viscoelasticity 133$ @ N1 `( X( p9 C0 ~
5.11 Summary 134
7 [6 H0 E: ~# ]% h4 l1 S5.12 Examples 134
/ [: q% r. }. m7 _9 x5.13 Problems 142
, B% k3 E2 C, TBibliography 1423 V/ Z4 C& s9 x% M0 d$ e& j' a
/ |1 ^, G- v2 u) S. J3 L$ y
) Z# Z' A8 v* p' q1 ~( t) G* E
7 E9 Z8 k, F$ X9 ?% p3 I6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145; J* o' y8 l3 S J7 b
6.1 Introduction and General Requirements 145# {% }, B+ L+ U: |) D! p, |7 X
6.2 Creep 1460 i2 ?9 h: R( L6 l+ w
6.2.1 Creep: Simple Methods to Obtain J (t) 1466 z% D" Y& o$ _) d
6.2.2 Effect of Risetime in Transient Tests 146* a. [/ N: Q* W6 p6 r9 q, r
6.2.3 Creep in Anisotropic Media 1482 P& u7 Y# B5 P- m0 o) V* f) O
6.2.4 Creep in Nonlinear Media 148$ }6 V' M0 z( t X) j
6.3 Inference of Moduli 150$ y# v9 ?0 I6 n+ ?; G
6.3.1 Use of Analytical Solutions 150
: l H$ r: w0 B7 J/ K6.3.2 Compression of a Block 1514 { O) e3 R+ A% C" t/ t! f l
6.4 Displacement and Strain Measurement 1524 d& p p7 S0 U& |5 Q- U# X
6.5 Force Measurement 156
8 ~/ V9 L. Y& o6.6 Load Application 157, A' t" C. J: F: k
6.7 Environmental Control 157
% {4 |+ _* f$ N- D# U' Y6.8 Subresonant Dynamic Methods 158
+ |9 c: r- H3 V5 g6.8.1 Phase Determination 158$ S. n/ y" U4 W+ T; ] X* F# Y
6.8.2 Nonlinear Materials 160) o. d8 I% z }7 I
6.8.3 Rebound Test 1617 w: G7 U. k" E/ A) [3 H* }
6.9 Resonance Methods 161+ |* x* c" [- F" @
6.9.1 General Principles 161
. O$ I& v4 a7 J) g( G' D* H# k6.9.2 Particular Resonance Methods 1632 o3 J$ U% l" f1 ?% o* c
6.9.3 Methods for Low-Loss or High-Loss Materials 166
& y, s1 e$ a% e4 E9 c6.9.4 Resonant Ultrasound Spectroscopy 168
3 U$ F2 U- a. E7 p! U9 N8 _6.10 Achieving a Wide Range of Time or Frequency 171
4 Q' v( j5 E3 f! {3 {9 }8 S0 ?1 u6.10.1 Rationale 171$ K- ^4 ~& i- C. @) } k4 J
6.10.2 Multiple Instruments and Long Creep 172: g$ u2 n( z7 r D
6.10.3 Time–Temperature Superposition 172
$ n% p% s7 s0 o- ?" K; O# ^; m6.11 Test Instruments for Viscoelasticity 173
- ^. _- b( f+ d7 O2 g O5 n6.11.1 Servohydraulic Test Machines 173
7 o" Z2 O6 y7 S( p6.11.2A Relaxation Instrument 174% T; }4 i; K( a" e/ `4 ~+ d
6.11.3 Driven Torsion Pendulum Devices 174
+ e1 _* ]- o8 o6.11.4 Commercial Viscoelastic Instrumentation 178
) @7 [' W4 ]3 t, t8 p2 V6.11.5 Instruments for a Wide Range of Time and Frequency 179
# e( ^6 i+ z% l+ }7 [6.11.6 Fluctuation–Dissipation Relation 182( ]6 E) I) G: {/ D* p' ^' X2 G
6.11.7 Mapping Properties by Indentation 183
; S( t! j0 r7 b' r3 [, z) B& I6.12 Wave Methods 184* ~3 c) E% F5 Z9 M9 x
6.13 Summary 188* `& p1 `6 I. \ ^5 E0 ^) F' B* p$ H
6.14 Examples 1885 e0 q% f3 H1 g, O9 G6 J
6.15 Problems 200
+ @" R4 _% H3 x- vBibliography 201
6 t/ i9 \" p% w6 O* F2 S) l
4 {* S# c; F7 H( V9 j& y
, ~/ f5 A+ a/ e" j( B) _+ [$ Y) f1 o6 s- S
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
0 y- Z3 b7 p* G2 U- O7 a& t+ y) w7.1 Introduction 2078 h( o [, J% l9 F- e
7.1.1 Rationale 207
4 k$ p W( V; C' Q' g# w7.1.2 Overview: Some Common Materials 207# m9 ~3 n) l1 @* R0 n& \0 }
7.2 Polymers 2080 M/ y/ n; E& }- Y
7.2.1 Shear and Extension in Amorphous Polymers 208
+ r6 N& ?$ {% K7.2.2 Bulk Relaxation in Amorphous Polymers 2123 u& [3 S4 B6 f9 D- J
7.2.3 Crystalline Polymers 213
$ [0 b4 g9 M: f1 r# \( m; w9 ^4 h7.2.4 Aging and other Relaxations 2144 k9 c" T1 k* R" V/ h
7.2.5 Piezoelectric Polymers 214/ c) ?- b) Y: w9 \5 f; c; {7 ~6 O# F
7.2.6 Asphalt 214
8 g6 d4 n/ M, D$ J7.3 Metals 215" v. ]! k0 |" C+ B, i
7.3.1 Linear Regime of Metals 215
6 L& |! W5 ^1 T3 Y7.3.2 Nonlinear Regime of Metals 217% M6 k+ i' g/ o9 t
7.3.3 High-Damping Metals and Alloys 219% ]! m6 P) p. W
7.3.4 Creep-Resistant Alloys 224
' c) c) M- T( |* m7.3.5 Semiconductors and Amorphous Elements 225# E; a. L( p6 d% b' l+ v
7.3.6 Semiconductors and Acoustic Amplification 226
8 r* J5 f$ L" }5 U" W, U7.3.7 Nanoscale Properties 226
% R& ]+ ?6 z* ?7 ?$ q; \7.4 Ceramics 227
K1 ~: M6 S8 \9 @8 ~2 m7.4.1 Rocks 2271 z, c, t6 M$ W+ h
7.4.2 Concrete 229
+ l- N: D, k8 U" b/ ?, h5 N4 |4 N7.4.3 Inorganic Glassy Materials 2313 ^) K9 Q' I: I& A6 K
7.4.4 Ice 231
8 [4 {3 J9 w2 X7.4.5 Piezoelectric Ceramics 232
. g! J" v! w" k! {3 m, [ a7.5 Biological Composite Materials 233$ K- k7 M9 U# J: U
7.5.1 Constitutive Equations 2345 }, Z7 ?2 A P/ U5 S# Q1 U
7.5.2 Hard Tissue: Bone 234
& S/ M/ B5 k% ]* g' ~0 _( |# ~/ \9 f7 k! B7.5.3 Collagen, Elastin, Proteoglycans 236# X1 z( C/ V% D9 A6 c. ?4 g
7.5.4 Ligament and Tendon 237
4 O1 p0 J% s$ Z* i2 R7.5.5 Muscle 240 ~9 u/ U8 E; D4 P2 I
7.5.6 Fat 243
3 D# o% F @1 z1 L) ]& {+ B7.5.7 Brain 243
. r! Q7 b" `% Q5 q7.5.8 Vocal Folds 2443 D+ w3 p G* z# g4 }! o- J0 d8 F
7.5.9 Cartilage and Joints 244
! P4 `7 L9 [( r' \# ^7.5.10 Kidney and Liver 246. R w+ B3 K# T/ ^0 i
7.5.11 Uterus and Cervix 2465 P3 G) I1 j R4 n
7.5.12 Arteries 247
' w* k6 m' F3 ?; I2 c7.5.13 Lung 248
0 n9 C, F. K' @" `7.5.14 The Ear 248% U/ e5 N" D0 S, s$ m9 K+ {
7.5.15 The Eye 249
( c/ f; i' J. s7.5.16 Tissue Comparison 251
/ N+ I' c: F5 O7 ^( t7.5.17 Plant Seeds 252$ J- k8 N) t- E. h, j
7.5.18 Wood 252
7 |6 X" J7 ?, ]- T. |; a7.5.19 Soft Plant Tissue: Apple, Potato 253
. z/ `/ z9 o, y1 q7 b9 W* H# s9 W7.6 Common Aspects 253' O X5 b1 z0 O# J
7.6.1 Temperature Dependence 2532 _* o0 ~5 j. K+ P3 x
7.6.2 High-Temperature Background 254
6 C% B$ L3 O6 `$ s% Z' f7.6.3 Negative Damping and Acoustic Emission 255
( g, H3 s! O" d7.7 Summary 2551 |0 L' C' }4 i2 ]+ S. L
7.8 Examples 255$ Q+ H: A& ]% Z7 L4 P1 J
7.9 Problems 256
1 Y3 `: J7 ?) A5 Y! ]* n, bBibliography 257# {& m" ]' \: f) E2 H2 F
. p7 a* j; [5 e! d& z4 R& W& [9 B
* Q) }6 l$ {- Y6 g c4 f4 |# T- z4 Y- K ^* Y1 q+ [
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
: {, x, E& S- ^ c/ J8 h- X8.1 Introduction 271
- X( W' d+ m( i8.1.1 Rationale 271' H4 I1 x2 K4 W
8.1.2 Survey of Viscoelastic Mechanisms 271" \9 l& z [9 h+ k
8.1.3 Coupled Fields 2733 |2 l" K, ^) c% a7 F9 x5 d9 g
8.2 Thermoelastic Relaxation 2742 S1 y2 t- A& @7 S) R
8.2.1 Thermoelasticity in One Dimension 274
- G5 z# R. y4 p% x8.2.2 Thermoelasticity in Three Dimensions 275. U- g) f' E4 D! M: W* ^ e; V- Z
8.2.3 Thermoelastic Relaxation Kinetics 276
. X( J4 E. x# T( _8.2.4 Heterogeneity and Thermoelastic Damping 278) d0 ]6 P- [' ~
8.2.5 Material Properties and Thermoelastic Damping 280
, k& X' R+ D1 D5 B A- q8.3 Relaxation by Stress-Induced Fluid Motion 280
. Z: ^" a$ R, W# q6 ^4 C$ x8.3.1 Fluid Motion in One Dimension 280+ L; ?4 D& p9 |* B8 ]# M# G1 P
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
/ x& x0 N" u/ ?+ U2 @0 ?; A% @8.4 Relaxation by Molecular Rearrangement 286, B$ y0 r; ?; d, d9 A0 \
8.4.1 Glassy Region 286
8 g/ e7 u( H( B8.4.2 Transition Region 2870 V. K( [9 \# F( B7 ~3 E' l
8.4.3 Rubbery Behavior 289
3 b+ ]- w% j4 a$ m/ c8.4.4 Crystalline Polymers 291
4 ~" _$ V+ W9 y: `8.4.5 Biological Macromolecules 2921 }# O0 I& C! \( D* J2 u. q
8.4.6 Polymers and Metals 292
. E$ H$ P( I# j# I' s8.5 Relaxation by Interface Motion 292. c0 S* \6 T4 M! w
8.5.1 Grain Boundary Slip in Metals 2923 o7 f. p( }6 ^! d
8.5.2 Interface Motion in Composites 294
1 s- `" C) M# ^# g; P8.5.3 Structural Interface Motion 294
& i1 e& A/ t. o* Z& B8.6 Relaxation Processes in Crystalline Materials 294
+ ?" S: y, Q) I! `( C2 G9 u Y) p8.6.1 Snoek Relaxation: Interstitial Atoms 294% N, g5 f: c) C6 {
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
# |3 x, p$ C1 c6 e" f- q9 ^! r: t8.6.3 Gorsky Relaxation 299
}) o3 S2 I; q1 e! B8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
4 D. o% j$ Z( R8.6.5 Bordoni Relaxation: Dislocation Kinks 303
) e/ V, W- u% q4 x X' f# c" `' N8.6.6 Relaxation Due to Phase Transformations 305
* `( J' ?# ~# T' V3 i: i, y, b8.6.7 High-Temperature Background 314! i% [. F+ j' Z7 Z
8.6.8 Nonremovable Relaxations 315
. X0 r4 M0 l3 g% N/ L. B# \7 C- {; X8.6.9 Damping Due to Wave Scattering 316
" ?; z0 S) H6 ?9 B& j4 M8.7 Magnetic and Piezoelectric Materials 316
6 x! V* K d! {* a9 \8.7.1 Relaxation in Magnetic Media 316
( t( i- J" [* Q8 ~0 P( g" w8.7.2 Relaxation in Piezoelectric Materials 318
9 Q3 ^$ n3 F; \- Q9 `# N, r& R' U1 x8.8 Nonexponential Relaxation 322
0 h0 J& K% U1 d* l- B8.9 Concepts for Material Design 323
2 X5 X+ W( ^9 |: ]8.9.1 Multiple Causes: Deformation Mechanism Maps 323
0 G. ^8 H8 A2 n g8.9.2 Damping Mechanisms in High-Loss Alloys 326
* w6 G4 z+ r: v1 z' S7 S8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326. A1 ~' j l" k {
8.10 Relaxation at Very Long Times 327
6 J* n. `+ r! H. G C8 p8.11 Summary 327' O1 a' r, w( D+ j0 z3 i
8.12 Examples 328( F! ^ Z u! h2 L
8.13 Problems and Questions 332
/ e9 g5 }4 V7 y/ F. ^Bibliography 332+ Y: u0 R) _$ _% V2 p& j
! U" Q1 c- ?0 K: L
- q8 O. a( x# v: b
! t0 d( ^/ d9 ~9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
6 x# N b" c `4 q7 B3 e1 U9.1 Introduction 341
5 k0 @1 r* `4 p( s. V2 m5 f, \9.2 Composite Structures and Properties 341
; G$ S0 `& Y1 H U' z- t9.2.1 Ideal Structures 341
5 M9 N, ^& E' F; M9.2.2 Anisotropy due to Structure 3423 g6 P Y% m# L9 q
9.3 Prediction of Elastic and Viscoelastic Properties 344
3 A; i( k% f2 P2 P; s# c4 v5 F9.3.1 Basic Structures: Correspondence Solutions 344/ T5 x; j; x( I: S7 }- x
9.3.2 Voigt Composite 345" g3 p! I' Q- F6 h
9.3.3 Reuss Composite 345
1 |3 q) V r& Q( H9.3.4 Hashin–Shtrikman Composite 346
+ |) f; h) S: ?4 b* y9.3.5 Spherical Particulate Inclusions 347
4 W; c; T& j' l) L9.3.6 Fiber Inclusions 3494 p( x3 l9 c. U7 d
9.3.7 Platelet Inclusions 349
$ q3 R8 T, u$ ?* L o8 O1 \9.3.8 Stiffness-Loss Maps 350
6 V5 l2 B) ?5 F# O9.4 Bounds on the Viscoelastic Properties 3538 T8 q' X7 {7 _# t5 j3 i
9.5 Extremal Composites 354
# [ f% y/ r5 ^/ m& Z9.6 Biological Composite Materials 356
' U z( m" d3 l3 q; S y9.7 Poisson’s Ratio of Viscoelastic Composites 357
+ ?# E$ D6 g7 S+ r. ~ j* G9.8 Particulate and Fibrous Composite Materials 358) @- l- T- Q2 a4 Q0 |7 G3 S
9.8.1 Structure 358
# R( @8 N8 S6 f8 K" F- @9.8.2 Particulate Polymer Matrix Composites 359- ^% m& U0 o- o( O s2 Z `
9.8.3 Fibrous Polymer Matrix Composites 361" t+ j2 `& `, S# w L
9.8.4 Metal–Matrix Composites 3623 R9 k" z5 e# {) u! C- j9 g; B
9.9 Cellular Solids 363
5 F ]' V/ A* {6 ~, R' o, l9.10 Piezoelectric Composites 366
2 P$ P: { ?. z# [/ d$ ~5 G9.11 Dispersion of Waves in Composites 366" ~/ h& d4 `% b8 V8 Z5 u
9.12 Summary 3679 H% F. Y5 c$ H/ F* a# l
9.13 Examples 3672 o* u* i# n8 X5 s6 K
9.14 Problems 370( R0 a2 c. r2 a6 `9 J+ w4 r2 y
Bibliography 370
+ _# E: j( K- r1 ?
* P& {4 f- @- T; m( k7 j, x' [, }* i4 ]9 ]# N$ N
+ v; k0 }4 @0 A, z* J9 k, Q10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 3775 H7 `# v0 {3 T' {
10.1 Introduction 377
0 r2 Q( |' d& {6 O/ ]0 U10.2 A Viscoelastic Earplug: Use of Recovery 377! i [% `: t8 a& y
10.3 Creep and Relaxation of Materials and Structures 378* P; a" }; i/ p N
10.3.1 Concrete 378, ^2 ~9 m: r: L+ N* k7 O
10.3.2 Wood 378
8 X4 `# J- J6 N% Y' c10.3.3 Power Lines 379( D2 l) r5 l3 |
10.3.4 Glass Sag: Flowing Window Panes 380
8 M* D0 T1 ]+ S10.3.5 Indentation: Road Rutting 380! v6 g5 {8 L( f8 l) D9 A
10.3.6 Leather 381
# s3 s0 J* P! @% O0 @10.3.7 Creep-Resistant Alloys and Turbine Blades 381
0 b, p3 | Y3 M& o; R1 C! E10.3.8 Loosening of Bolts and Screws 3829 u! X9 r |2 c% S" t8 y
10.3.9 Computer Disk Drive: Case Study of Relaxation 384( E/ u' v* w. z
10.3.10 Earth, Rock, and Ice 385* U& p1 R) E% M
10.3.11 Solder 386
0 y5 z5 k; n/ J L! F10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
, [) d) }7 j* a10.3.13Tires: Flat-Spotting and Swelling 388
' ?. \- t1 J! r% g% r1 P10.3.14Cushionsfor Seats and Wheelchairs 388
6 z2 ^& G1 m- R( X; b. }10.3.15 Artificial Joints 3892 z) U4 m2 r( s8 K6 Y" \( I9 X
10.3.16 Dental Fillings 389! q# M9 s* {' Z8 `; W
10.3.17 Food Products 389) F4 m) L; Z4 c
10.3.18 Seals and Gaskets 390, B# s6 G& W6 {% l
10.3.19 Relaxationi nM usical Instrument Strings 390: Y" _! T6 u+ {3 A
10.3.20 Winding of Tape 391
( g% N. |6 G! B1 a7 V" Y" `10.4 Creep and Recovery in Human Tissue 391* I) |& F8 w+ z6 S
10.4.1 Spinal Discs: Height Change 391% N0 s/ Z: S0 t/ X3 b7 L; w8 P* F/ z6 R
10.4.2 The Nose 3921 F& Y r k# h
10.4.3 Skin 3920 T/ j z+ `. Q
10.4.4 The Head 3937 @1 w/ X( t% Q9 i1 D# @
10.5 Creep Damage and Creep Rupture 394
9 h: Z' | l7 l10.5.1 Vajont Slide 394, I0 R& H( N5 S8 E1 a8 W. L
10.5.2 Collapse of a Tunnel Segment 394 h* d) Y$ p" i$ C
10.6 Vibration Control and Waves 394
) g7 {! F0 K, S! d% }10.6.1 Analysis of Vibration Transmission 394
+ z% T1 `3 |9 k0 n% z" J+ [10.6.2 Resonant (Tuned) Damping 3973 i. P X2 @' x6 s( \. W
10.6.3 Rotating Equipment Vibration 397/ H* i2 L u1 C# D' c" ]- U
10.6.4 Large Structure Vibration: Bridges and Buildings 398
$ o- _8 r9 A3 b( @$ B! n1 ~10.6.5 Damping Layers for Plate and Beam Vibration 399
; a7 g$ o0 D ?10.6.6 Structural Damping Materials 400
9 A) e: T6 s% k5 t& G T9 a10.6.7 Piezoelectric Transducers 402
% U- _2 q* F: e) A# S- V( ~10.6.8 Aircraft Noise and Vibration 402
! N. B# G6 N1 O! ^/ K10.6.9 Solid Fuel Rocket Vibration 404
# |! A% U: u/ f6 Y9 z* H2 l" h. B, J0 I10.6.10 Sports Equipment Vibration 404# X5 i% A" A. P0 {4 j5 C. o6 `6 G- W
10.6.11 Seat Cushions and Automobiles: Protection of People 404+ }+ K" a+ K$ q
10.6.12 Vibrationi n ScientificI nstruments 406 J. U/ f6 F; ~' R6 _
10.6.13 Waves 406! x [4 J7 Z, H- R; i
10.7 “Smart” Materials and Structures 407& S1 j4 r1 P8 N) g
10.7.1 “Smart” Materials 4075 B, j4 G& K, c4 g* l" a% M
10.7.2 Shape Memory Materials 408
2 v7 V* R" B& P$ E; x- n4 ^10.7.3 Self-Healing Materials 4097 N( ]1 G# n& R! U9 p
10.7.4 Piezoelectric Solid Damping 409: P3 l: A# ]) s% K9 `
10.7.5 Active Vibration Control: “Smart” Structures 409
& S9 e+ S: O2 I6 K8 u5 R& R7 l10.8 Rolling Friction 409
' d* l* T C; P. k3 V10.8.1 Rolling Analysis 4103 l$ l8 l" b; ^
10.8.2 Rolling of Tires 411" _7 R( r' U) P0 p
10.9 Uses of Low-Loss Materials 4126 I) b! b9 F- H' S' |+ t7 r' `( r
10.9.1 Timepieces 412; K5 b+ C7 f2 m2 L# e8 D4 C3 X
10.9.2 Frequency Stabilization and Control 413
& b. m! @& z6 G10.9.3 Gravitational Measurements 413% I, ^! T) }0 z; Y
10.9.4 Nanoscale Resonators 414
0 J/ f" ^ U5 t5 M2 I2 b$ D10.10 Impulses, Rebound, and Impact Absorption 414
/ i( R) ?( M* \% Q10.10.1 Rationale 414
- [6 h. n$ |" y5 l10.10.2 Analysis 4158 ?$ X! S& w4 s9 P+ W
10.10.3 Bumpers and Pads 418% Z; J/ F+ M% I
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
6 n" q+ q) _* }/ r" o10.10.5 Toughness of Materials 419
, H$ Q! X! t) b- h0 Q10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420. f' o# X L4 E- e& ]5 O" ?
10.11Rebound of a Ball 421
% u- ?; [6 c0 o$ R+ D10.11.1 Analysis 421
( k0 ]( t) y: A3 A6 O5 P10.11.2 Applications in Sports 422/ b' @! N+ }; K" m# M
10.12 Applications of Soft Materials 4242 l( ^, r# [5 A
10.12.1 Viscoelastic Gels in Surgery 424
- R9 A: n8 f8 n* _: Z10.12.2 Hand Strength Exerciser 424
/ G5 E \6 |4 T! i9 \" V10.12.3 Viscoelastic Toys 424
# v5 A4 y' q* o10.12.4 No-Slip Flooring, Mats, and Shoe Soles 4257 g- ^5 I( e" `; j: ^" w' j9 }; F
10.13 Applications Involving Thermoviscoelasticity 425
* \: O6 ~9 _+ u6 U8 y10.14 Satellite Dynamics and Stability 4267 R C' w- w) a: w: m
10.15 Summary 428
( h& B7 T6 u0 t) M10.16 Examples 429# x# [- H8 X& }- R
10.17 Problems 4318 {1 E) R+ ~) f
Bibliography 4317 W6 q0 J6 q* O$ Z' a; O% {
: ~* T# m d/ n# ?
2 k7 G s4 c4 h, I
4 {8 Q+ Y+ O6 L2 }3 C# pA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441( C0 ~: B! V$ F0 n
A.1 Mathematical Preliminaries 441
3 n5 k9 P4 ~- B) U0 q& L* xA.1.1 Introduction 441& N3 H: i4 Y# c. B: J8 P6 @
A.1.2 Functionals and Distributions 4411 ?% _' [) X n/ I7 c
A.1.3 Heaviside Unit Step Function 442+ ]. I( ? A1 [( R2 ?4 \7 m
A.1.4 Dirac Delta 442
: f6 t1 v: G0 _9 {% HA.1.5 Doublet 4432 @# I/ v5 b6 J% i( ~
A.1.6 Gamma Function 445# N( `* Z! E' ?7 K
A.1.7 Liebnitz Rule 445# F5 t5 N# B% C1 T3 V2 I! G
A.2 Transforms 445 H5 c& T5 U* B
A.2.1 Laplace Transform 446
. R/ X2 s- _ ]% i; B$ x' RA.2.2 Fourier Transform 4465 g! d5 B( c1 {( {# S: |
A.2.3 Hartley Transform 447/ r- g1 s1 y2 \* m# J8 c
A.2.4 Hilbert Transform 447! A; K7 R) [- X% m2 y
A.3 Laplace Transform Properties 448% W5 t; N/ \4 j8 [
A.4 Convolutions 449: z+ }. X' d* l T4 i: {" j9 n
A.5 Interrelations in Elasticity Theory 451
+ _9 ?! b( Z' t0 e2 [A.6 Other Works on Viscoelasticity 451" |3 y' s+ ? u/ m
Bibliography 4527 {' P* }( I% n- {% I
" L- s% v J3 C
& e x K2 Q1 A5 L; l- W8 @
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455) p5 _( s4 u, f" l0 {6 V6 ^
B.1 Principal Symbols 455
5 J' K: I- a- r0 E# C w s5 EIndex 4575 t% ~- a! c+ L( e9 S
6 `( t/ _. w y; p; O* ~: A! n$ R$ J, ~) O l( k+ L' v
|
|