机械必威体育网址

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 1036|回复: 0
打印 上一主题 下一主题

英文全书下载 Viscoelastic Materials. Roderic Lakes 2009 《粘弹性材料》

[复制链接]
跳转到指定楼层
1#
发表于 2015-1-9 22:34:06 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 陈小黑 于 2015-1-9 22:37 编辑
, o4 i  L$ E$ J& E1 r4 X- ^; H
* A8 n2 |* {' H Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下载次数: 6) 5 T* ]* m# F1 J6 J% |

- A. b" Q: T: ]" i+ F. }/ ? Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下载次数: 6)   n* x: v" \9 s( r
5 d) H0 I% W) |0 P+ n$ k
目录  U" i) d+ G' N! n3 D; c# Z6 E1 E/ }

8 ?6 y. u8 W) h. y1 gContents5 c& w; {% a% L1 N3 O5 c

) Q" i4 l7 D* x, W% H% C- @Preface page xvii
1 B, \! K* e' U% Q' S% |; ^8 }& p8 D1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
$ X; a& m6 d+ y! n" ]1.1 Viscoelastic Phenomena 1  l6 c, U) J. u  g8 Y" `
1.2 Motivations for Studying Viscoelasticity 3
, P; U  W& ^) }2 P1 H9 {4 Z1.3 Transient Properties: Creep and Relaxation 3
' m, E0 V3 a  f- B1.3.1 Viscoelastic Functions J (t), E(t) 3* `6 m7 C- ~/ X
1.3.2 Solids and Liquids 74 r. r% N3 V! \6 l$ ^3 g- F2 q
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
" H$ N, ?, H  @- j0 ?6 s6 U9 z1.5 Demonstration of Viscoelastic Behavior 10! N0 N6 `( v  j: f, K+ a: I: i* j8 y, ?
1.6 Historical Aspects 10
' l6 w: j5 }7 y: s! F5 ?- I1.7 Summary 11
8 t1 ~) m0 l" L  l& o" S7 s0 j1.8 Examples 11+ F/ J" j& b/ c( u  G$ [
1.9 Problems 12
% [# Y& y- w5 ]Bibliography 12
4 v2 k3 U+ A  ~' F, V" f5 Y7 a. u0 V/ d* E# T6 N$ W

9 p+ q! j6 J8 T0 f5 ~# ~" E7 m+ @# f9 L/ g) B

6 U" }& a9 h. x+ u
5 b" z' [  T8 E& H4 j
! W; K; c4 x4 e# B6 q- A# |2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 D6 X7 _& }( G) g% t, o* |* i
2.1 Introduction 149 R' A  V& X! m  t- u; Y  y' _
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
3 c8 w: U+ ?4 T2.2.1 Prediction of Recovery from Relaxation E(t) 14! m- J, H( m0 X
2.2.2 Prediction of Response to Arbitrary Strain History 15
8 _; q& d3 t1 B6 ~9 C1 ?2.3 Restrictions on the Viscoelastic Functions 17' _% b% f- b. m2 m9 T) |6 H
2.3.1 Roles of Energy and Passivity 173 T$ T7 k" h0 O* ?% u0 J/ ?! p/ H
2.3.2 Fading Memory 18
1 F# \" S0 w3 X5 i7 v" b0 ~2.4 Relation between Creep and Relaxation 19% M+ B0 W& W/ V- z- d( k
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19. G" g( g/ N- A) Q6 |
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
8 f% Z6 e+ i' _2.5 Stress versus Strain for Constant Strain Rate 20
3 Q7 Y& C1 v7 l+ l0 m* s+ j1 z6 f2 T2.6 Particular Creep and Relaxation Functions 21/ h: a0 }# x  }7 A
2.6.1 Exponentials and Mechanical Models 21- d0 y7 {. y* X+ e  R% ]! q- D
2.6.2 Exponentials and Internal Causal Variables 26+ ~: x3 `: Q7 f4 x  {) n' x4 i
2.6.3 Fractional Derivatives 27
6 y* B- A6 j3 y+ g# e2.6.4 Power-Law Behavior 28
1 c% t4 p5 ?3 o$ W2.6.5 Stretched Exponential 294 k+ a% a2 f  Z$ D
2.6.6 Logarithmic Creep; Kuhn Model 29
! d* U% }( q$ C4 {! S& L4 t' e" C2.6.7 Distinguishing among Viscoelastic Functions 30
: t6 U. h2 F; e0 v2.7 Effect of Temperature 30, V1 z. q4 D" A, b
2.8 Three-Dimensional Linear Constitutive Equation 339 S- F7 O  ?0 Q* u: r
2.9 Aging Materials 35
3 S. Z9 ~' ^- I* S2.10 Dielectric and Other Forms of Relaxation 35
) Z, Y( y) f1 r- j2.11 Adaptive and “Smart” Materials 36
+ Z( t! U# Q1 g- j) F" |% }6 b  C2.12 Effect of Nonlinearity 37  k7 {  d4 m% E& c3 T8 E- @
2.12.1 Constitutive Equations 371 `$ @; R- P4 {0 }1 ]5 d1 b
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40$ _1 `9 d6 Z4 d4 q( E8 h
2.13 Summary 43# S5 M! q8 t' ?! y
2.14 Examples 435 _* P8 }7 u, L6 w
2.15 Problems 51
7 Z( k. ?) f7 w. A/ ^( K8 W& GBibliography 52
! m. T0 l, |3 g# w. Q4 y( P% E. i' T" v6 C9 e/ s, E

% K/ a7 z: Q1 h0 H9 _( B
. ]: E! ?) q/ ?; Q
$ w* w; l# G1 K$ n3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1 a- r  v. M4 t0 i/ g3.1 Introduction and Rationale 55
1 _8 _/ j; b' R# X5 h0 f$ J3.2 The Linear Dynamic Response Functions E∗, tanδ 56
- b: Y. A$ f# ~1 y" \3.2.1 Response to Sinusoidal Input 57& d2 g/ L* D7 D3 U0 I  j
3.2.2 Dynamic Stress–Strain Relation 59& ]' f1 g6 {& x- j& C; ^) z' {
3.2.3 Standard Linear Solid 62( r/ u7 z% D) D, [  d# {7 R! k0 f" Y
3.3 Kramers–Kronig Relations 63- R2 d3 m6 @7 x# F1 _4 Q$ z
3.4 Energy Storage and Dissipation 656 D/ a; T( R9 }8 O7 o
3.5 Resonance of Structural Members 67
' o1 n9 |5 K0 V1 Q9 P3.5.1 Resonance, Lumped System 67
. r1 C& \2 S, m0 M0 {3.5.2 Resonance, Distributed System 71( G* q9 ]& u5 y- q1 c, d/ H0 H2 K
3.6 Decay of Resonant Vibration 74
# C% O+ \7 c, [8 H1 S2 x/ M3.7 Wave Propagation and Attenuation 775 j& L% `' U/ R8 D2 g2 z' {
3.8 Measures of Damping 79
" ]' l# U8 U4 l( b2 t3 }& S* J' `3.9 Nonlinear Materials 79' z/ G9 u% G& n3 t
3.10 Summary 81- v) T9 a$ I' q& r
3.11 Examples 81
. p2 v: h8 I& K( j# m8 _1 Z& l3.12 Problems 88
) d7 B- U5 P- s4 L( RBibliography 894 b4 i7 f7 u) Y1 k1 E# u
$ l' R( B3 K/ ^9 L

* U3 P# D+ n; ~' M' F: V. ]. X+ `
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
! p# e, T8 F+ U4 ^& Z, N  v4.1 Introduction 91* S+ G: S; _# g8 t+ d
4.2 Spectra in Linear Viscoelasticity 92
" U. T1 p" n- g' G4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
2 s2 n2 {0 ]" \( U  O) R' U3 N+ n4.2.2 Particular Spectra 93
2 o  F- {; ]; J2 {& s4.3 Approximate Interrelations of Viscoelastic Functions 95" c1 N# v, |$ i
4.3.1 Interrelations Involving the Spectra 95  J- |: ~' q: z; Q' @3 p+ Y
4.3.2 Interrelations Involving Measurable Functions 98
& q0 W( }! a4 O, W4.3.3 Summary, Approximate Relations 101& y/ ~  Z9 M. f. ^1 d
4.4 Conceptual Organization of the Viscoelastic Functions 101
8 ?. `! J1 Q. X' Q  f4.5 Summary 104  j" e9 v' A$ B: b/ V/ o& K0 u. x
4.6 Examples 104  |3 P7 Q& x' Z/ `' I# H* A* a
4.7 Problems 109: Z% i9 i" f/ Y0 w0 L8 z
Bibliography 109
) D* y# x: w9 |( N2 y: M. G0 w# ~; x. {
. I; S" U, m/ i/ i  k
* ~2 F/ s: t: L  ~
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111: {' |- g. z  x0 M0 C$ J
5.1 Introduction 111( O1 P: \7 s% W$ H
5.2 Three-Dimensional Constitutive Equation 1117 `  e+ y: o) m/ B1 `
5.3 Pure Bending by Direct Construction 112
  A3 o+ `4 N  P1 Q/ b, q5.4 Correspondence Principle 114
3 p; T+ v* R; q$ J* D; F5.5 Pure Bending by Correspondence 116
! P! ?) Q% p3 P0 c* @5.6 Correspondence Principle in Three Dimensions 116
: j) S: H& }1 [9 {5.6.1 Constitutive Equations 116) o5 z* S3 P, i3 d; v
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117) d, G2 [1 {9 ?4 {, J# I
5.6.3 Viscoelastic Rod Held at Constant Extension 119
+ D5 C! D: O) I- E5.6.4 Stress Concentration 119
/ x5 G0 G7 O$ E- v7 v5.6.5 Saint Venant’s Principle 120
8 b: z6 U! G+ [( P5.7 Poisson’s Ratio ν(t) 121, v( H, ]+ U) i  m; R9 W  v  Y% P
5.7.1 Relaxation in Tension 121
: c9 r/ _/ a0 N, d( A0 l3 D5.7.2 Creep in Tension 123, r* C# k7 u( l: M7 H4 l3 K" k- O1 G
5.8 Dynamic Problems: Effects of Inertia 124
0 n6 i6 j$ c( f5.8.1 Longitudinal Vibration and Waves in a Rod 124$ X! y" W, `. a( G4 J) M
5.8.2 Torsional Waves and Vibration in a Rod 125
4 d! l& g+ J. N9 ]1 `) p) U* g5.8.3 Bending Waves and Vibration 128
3 P: y9 Q4 a) l" v7 T0 D5.8.4 Waves in Three Dimensions 1290 R0 J/ L) c: s* [/ V4 a% M/ S
5.9 Noncorrespondence Problems 1312 L( `9 G6 \7 Y6 I2 w) l, J
5.9.1 Solution by Direct Construction: Example 131: `% a4 p1 J2 \5 r' j; r/ }0 C
5.9.2 A Generalized Correspondence Principle 132
& A8 l! Q" ^4 ?$ T5.9.3 Contact Problems 132
5 o( O7 n7 V  Z: v% n5.10 Bending in Nonlinear Viscoelasticity 1331 F# ^) i4 H# `: _* [( k
5.11 Summary 134! F$ Y' u" r& ~
5.12 Examples 134
! G2 R1 u7 `) C# Q3 Z5.13 Problems 142/ y1 o( O- f% }* o0 x. i
Bibliography 142
4 m4 K9 O' K& y( C3 _/ C9 U3 Q/ A
! ^$ B# E5 u0 V2 H+ h9 O9 h  |6 s9 q' z( A, g" B
0 n4 r6 H* \& X( ?2 |* G
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7 l/ ^# r2 L8 x4 _4 J6.1 Introduction and General Requirements 145
" I' v; W: M7 v5 J7 c6.2 Creep 146
% L8 c4 ^3 q- o* X6.2.1 Creep: Simple Methods to Obtain J (t) 146
8 T$ m# C  ]; m+ b6.2.2 Effect of Risetime in Transient Tests 146* Q" C9 X" L+ R8 Z% R: N
6.2.3 Creep in Anisotropic Media 148
" f0 I6 v3 c/ l+ }6.2.4 Creep in Nonlinear Media 148
0 Q9 u; o+ O, N: v4 N6.3 Inference of Moduli 150: }7 B" H  F7 e6 K( B, h+ J- _. y- O. f
6.3.1 Use of Analytical Solutions 150- `6 y+ l; M& E% w4 N0 s1 V
6.3.2 Compression of a Block 151; Y- V: r  T. B+ G4 D& m
6.4 Displacement and Strain Measurement 152
7 F# E( \% i: m+ t/ B6.5 Force Measurement 1566 B6 B/ Y# j. E! D; }
6.6 Load Application 157
" S8 @# ]$ K% |1 A, P& c6.7 Environmental Control 157
5 f. Q5 K2 L0 @, D6.8 Subresonant Dynamic Methods 158
  B8 A- B  q$ H! V6.8.1 Phase Determination 158
, y. u" V9 @9 w: w+ H* l) s  T6.8.2 Nonlinear Materials 1600 ^* l  F1 Q: |; z+ H& ^# C# P
6.8.3 Rebound Test 161
: T, t4 K9 J& u+ x+ A9 u, j) T- ?/ [6.9 Resonance Methods 1617 p# k, O8 u3 u0 c5 ^
6.9.1 General Principles 161
  E7 p. R' _& i6 u" l6.9.2 Particular Resonance Methods 1638 N% c2 h& j1 T' V0 H( ^
6.9.3 Methods for Low-Loss or High-Loss Materials 1663 C) P: M4 w9 s* g
6.9.4 Resonant Ultrasound Spectroscopy 1689 h) I5 }0 i3 h' r8 C8 i# K/ [) p. J
6.10 Achieving a Wide Range of Time or Frequency 171
- i$ L1 A& b5 Z0 x* H( ^6.10.1 Rationale 1719 _$ S9 K: v- G& O" F5 I
6.10.2 Multiple Instruments and Long Creep 172
/ }- ~  \2 J% l+ |% G6.10.3 Time–Temperature Superposition 1721 e5 G9 \% F2 |+ ~/ O/ ^1 E5 {: m
6.11 Test Instruments for Viscoelasticity 173- i- c7 \; s  F/ r9 H
6.11.1 Servohydraulic Test Machines 173
& T; x% x+ J  j& `7 Q+ K- _6.11.2A Relaxation Instrument 1747 A' G+ ?6 S& Y7 j! v5 G! l
6.11.3 Driven Torsion Pendulum Devices 174
9 m; q8 M  \$ q# R3 j1 m7 l& G6.11.4 Commercial Viscoelastic Instrumentation 178
  S  q- y6 T* k6.11.5 Instruments for a Wide Range of Time and Frequency 179
5 H9 L' h: f* c6 B0 L" p( B3 D6.11.6 Fluctuation–Dissipation Relation 182
$ U* M6 t+ J6 H; a) Y" @6.11.7 Mapping Properties by Indentation 183
4 @0 A" d5 m: b7 I' h6.12 Wave Methods 184
; P6 q' q$ c8 X# b6.13 Summary 188+ R! k# n! R' ~
6.14 Examples 188' w* Z9 c, o- r. T! d
6.15 Problems 200
8 J  k& `3 @  T5 P9 rBibliography 201
2 h/ S, F7 r& [( t
( U- F/ _, N' k; M, U, A+ _4 g: E! E8 h( r" l$ o
5 g# j4 @- s: H: Y% q3 U$ N& M
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
; G7 j8 b: X. b1 d- d8 @9 u; a7.1 Introduction 207* C1 f! ^1 Q; V
7.1.1 Rationale 207
2 |* X. T' \# ?2 o6 e0 a7.1.2 Overview: Some Common Materials 207
' }' d7 V$ n8 c+ K: T* A0 S7.2 Polymers 208
8 N6 ?6 A4 i- U: R5 z) _7 n  w" s7.2.1 Shear and Extension in Amorphous Polymers 2080 v, U. U. m' S+ w
7.2.2 Bulk Relaxation in Amorphous Polymers 212
0 }% H0 H+ X0 ?# Y" J5 q% H7.2.3 Crystalline Polymers 213
8 z) o" t% t- J7.2.4 Aging and other Relaxations 214* j+ d- _0 C. f! W2 }* q; n. J
7.2.5 Piezoelectric Polymers 2148 J; y0 }2 l9 [% s4 O& W
7.2.6 Asphalt 214
1 }  ~2 M7 d+ t  t7.3 Metals 215+ p1 g$ }4 s% q" w2 s, P9 n% K
7.3.1 Linear Regime of Metals 215/ u4 g5 Z0 }; W2 f1 _
7.3.2 Nonlinear Regime of Metals 2170 z6 D$ q* e4 F+ {/ d
7.3.3 High-Damping Metals and Alloys 219
0 ^3 _9 ~) g7 R7.3.4 Creep-Resistant Alloys 224
/ G6 q* ~2 B$ y. L5 c7.3.5 Semiconductors and Amorphous Elements 225
  d1 l! B0 w: i- K" }1 F7.3.6 Semiconductors and Acoustic Amplification 2263 j" ?. o  |; ~
7.3.7 Nanoscale Properties 226
$ Z4 ]- U: c2 K2 `7 Y0 j! s% ^7.4 Ceramics 227+ U( s7 o& }* v
7.4.1 Rocks 227, m9 j$ O0 S' E. o, p
7.4.2 Concrete 2291 _- ?; c: {- {" X2 ?( B2 U
7.4.3 Inorganic Glassy Materials 231
+ T' \, ]: r6 w# `7.4.4 Ice 231
; p) Y% E0 y8 c8 j* d" p7.4.5 Piezoelectric Ceramics 232
; }8 y: H7 v5 P! w7 _7 W  L# z7.5 Biological Composite Materials 233% i: N4 h* E" Q7 U2 n
7.5.1 Constitutive Equations 234
( n% q: ?, g6 S7 G1 B2 l$ v7.5.2 Hard Tissue: Bone 234
# B) E' I7 m4 M* I: e7.5.3 Collagen, Elastin, Proteoglycans 2369 U7 X4 j8 N5 ^8 v4 b9 v
7.5.4 Ligament and Tendon 237
  Y1 g: ]/ d3 V7.5.5 Muscle 240
% A9 p7 w+ g9 t2 N, L1 _7.5.6 Fat 243
2 ^1 l( v( ]% B& n) D3 t7.5.7 Brain 243! y  i' \. A. |2 w3 r$ T
7.5.8 Vocal Folds 244
5 |- t6 n" }! }7.5.9 Cartilage and Joints 244
7 c. W- y/ Y( j0 L# R. g6 S1 A7.5.10 Kidney and Liver 246
1 D' t/ s  b6 ^9 a' k; u6 @! Y* j7.5.11 Uterus and Cervix 2464 c1 [4 ?* N7 ^6 n. L
7.5.12 Arteries 247; U4 Q" `' f" i: \. k/ Q$ W2 y( w6 M
7.5.13 Lung 248
# j! @4 v( ~* X; G7.5.14 The Ear 248) g. c2 B9 U. I* G; W$ H6 {
7.5.15 The Eye 249) ~0 [: B+ O2 F9 E( k
7.5.16 Tissue Comparison 251
! H0 B" b# R/ @: b; z* L7.5.17 Plant Seeds 252( f) _3 B* _; K0 y2 l4 x
7.5.18 Wood 252
+ {3 `% w; c% t, u7.5.19 Soft Plant Tissue: Apple, Potato 2531 s) {5 e: N7 M3 y& j$ o7 K) Y
7.6 Common Aspects 253& P, O: d0 v2 m% b; ]
7.6.1 Temperature Dependence 253, s; a0 D% D$ p1 }4 X
7.6.2 High-Temperature Background 254  W- v+ x$ S. X' ]& \! W8 S
7.6.3 Negative Damping and Acoustic Emission 255
- x. I& P8 S( a( M0 I7.7 Summary 255
/ p3 t: A; I8 \# Z2 _7.8 Examples 255% ~* j) ~* \3 O5 \
7.9 Problems 256
$ n  N. v; \: d3 L* e) g, B6 a% ABibliography 257
3 w$ _9 ]5 Q9 A+ ]! x  @% L
2 p. |" K8 `: \! S' X- H+ G4 N0 F: E# W( A$ b2 {1 B

0 K" g, y2 u& V8 ^8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5 k( Q. z. `& }$ W8.1 Introduction 271/ g# {, K7 U8 N1 L. v
8.1.1 Rationale 271' j) {3 v+ S- k, P  j0 i3 u7 S5 T
8.1.2 Survey of Viscoelastic Mechanisms 2712 l: P6 F. X" m! U
8.1.3 Coupled Fields 2733 _; I& k. r- p9 x; y) Y3 I, t8 p
8.2 Thermoelastic Relaxation 274
4 h2 P) V' I% p4 V4 W8.2.1 Thermoelasticity in One Dimension 274$ E2 r# M+ W' B
8.2.2 Thermoelasticity in Three Dimensions 275" d0 D7 A. ^% p. }8 {
8.2.3 Thermoelastic Relaxation Kinetics 276, q/ `. o5 O/ A9 |& T
8.2.4 Heterogeneity and Thermoelastic Damping 278
( b2 d/ k! E5 m& ?7 K; V; N# p8.2.5 Material Properties and Thermoelastic Damping 280+ R9 ^, l' P) k6 C, \! a; z, E: |
8.3 Relaxation by Stress-Induced Fluid Motion 280
- {, l: C6 U! Q2 t6 j/ _. l& P8.3.1 Fluid Motion in One Dimension 2805 Q: |! ~9 r3 U( a4 ]7 w+ c
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
* M4 y6 b4 I. X3 x  K" [7 d8.4 Relaxation by Molecular Rearrangement 286
; A0 l7 P4 u  }! ^5 K6 f8.4.1 Glassy Region 286
7 o  p# x1 Y$ u0 W5 c; ^+ F: M8.4.2 Transition Region 287# z# _6 e- Q# o# V" c! e0 K& K9 v
8.4.3 Rubbery Behavior 289
, Z" q- I: c9 p2 D) ^8.4.4 Crystalline Polymers 291% g% i+ y0 {. [* V" p
8.4.5 Biological Macromolecules 292
8 I8 R1 D+ Z0 n, v/ d( y8.4.6 Polymers and Metals 292" e/ J5 C0 u/ m6 ~5 i
8.5 Relaxation by Interface Motion 292
# z9 j% }* o5 Y: T9 p5 a$ D0 g8.5.1 Grain Boundary Slip in Metals 292
! Q) M$ b  |$ J3 o8.5.2 Interface Motion in Composites 2943 ^% o. f4 h- f2 ?
8.5.3 Structural Interface Motion 294$ @7 H: Y/ @! x
8.6 Relaxation Processes in Crystalline Materials 294
! `: X# |2 C& q% f- C8.6.1 Snoek Relaxation: Interstitial Atoms 294! g* G$ r7 l: d! `0 G7 b, X
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298# B& X) M# n- w4 |
8.6.3 Gorsky Relaxation 299
7 Z) @: _8 \6 b& {3 k9 J/ ^8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
( q. w: T3 N& I1 @6 Q) W" G. r8.6.5 Bordoni Relaxation: Dislocation Kinks 303
/ d( }) _( a* ^) S8.6.6 Relaxation Due to Phase Transformations 305
/ O, H6 J4 R" h7 {$ h; n$ {. p8.6.7 High-Temperature Background 3140 N/ X3 ]& q9 c0 P( p5 U1 u9 h
8.6.8 Nonremovable Relaxations 315
- M/ T1 d8 r  [- V; I8.6.9 Damping Due to Wave Scattering 316
& J. o  ]4 O0 u' f8.7 Magnetic and Piezoelectric Materials 316
' y( [. |7 E) j8 L; u9 o8.7.1 Relaxation in Magnetic Media 3160 T4 V/ X' w0 T9 U" F1 s2 `. c
8.7.2 Relaxation in Piezoelectric Materials 3180 g, D6 }6 g2 j# c' W4 D
8.8 Nonexponential Relaxation 3223 X1 I% ~) U& k0 i2 p
8.9 Concepts for Material Design 3233 R1 L3 ^/ h3 |3 C" z5 {4 X
8.9.1 Multiple Causes: Deformation Mechanism Maps 323# t7 Y& x- O% Y! x8 e, M& J1 a4 ]1 m
8.9.2 Damping Mechanisms in High-Loss Alloys 326! _9 ?% k9 Q2 o  G' H; S! Q
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326# N) E  N) J4 |1 e6 U
8.10 Relaxation at Very Long Times 3276 F# @1 ?% O* r* T: b7 U1 s
8.11 Summary 327
5 ~$ |: r8 l2 I, d, i3 d8.12 Examples 328
! ~6 ~/ j# x* K$ v8.13 Problems and Questions 332
3 u* }5 l6 T5 U; n; J5 DBibliography 3321 ^1 X6 a  x0 M" c# x6 ~- w+ T

0 M. N2 C: A: Y8 G5 ?; G$ [- m+ r2 x; {& f

/ W& {0 y2 Z2 o+ d9 X1 `1 _/ f9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
& S3 i5 S1 }, ^2 @: N8 p1 Q/ r* t9.1 Introduction 341
# w% E2 x0 b2 q3 D9.2 Composite Structures and Properties 341: E+ }9 Q: F5 B* `( k* B
9.2.1 Ideal Structures 341
* L$ n' t; s; n" W1 @9.2.2 Anisotropy due to Structure 342
% }! ~8 {, {! n' v4 T. D9.3 Prediction of Elastic and Viscoelastic Properties 344
( i: F/ ^4 r* T: g' l8 w9.3.1 Basic Structures: Correspondence Solutions 344$ }7 I+ V1 B- O. h3 J! Z# f& ~
9.3.2 Voigt Composite 345% ^5 L5 o3 A# J" |/ a+ I
9.3.3 Reuss Composite 3451 @) b" F" r) d
9.3.4 Hashin–Shtrikman Composite 346
( D1 P) V: m; X. N( D+ T# I$ ^9.3.5 Spherical Particulate Inclusions 347* X# |" x' |$ ^+ G6 i7 ]4 L
9.3.6 Fiber Inclusions 349
0 G$ p% T0 w5 T; `9.3.7 Platelet Inclusions 349
9 @7 f" p1 o. |* p9.3.8 Stiffness-Loss Maps 3508 R  G( o9 k+ T
9.4 Bounds on the Viscoelastic Properties 353# h% K9 ^! Q" k) c. J2 H
9.5 Extremal Composites 354/ y: _$ @6 k: U  d, r: a; J) l! I
9.6 Biological Composite Materials 356
6 J# E+ {3 q) `9 X9 {9.7 Poisson’s Ratio of Viscoelastic Composites 357
7 F! `% K+ E! ]# u9.8 Particulate and Fibrous Composite Materials 3580 ?' O; _0 P! t, B0 e, B
9.8.1 Structure 358/ N9 ?1 ?0 Q' G: Z6 K( w3 Z2 J( p3 d
9.8.2 Particulate Polymer Matrix Composites 359
8 Q$ V/ [1 R1 h8 q) u9.8.3 Fibrous Polymer Matrix Composites 361
. ]  {- g& X8 R* A3 W. f# M9.8.4 Metal–Matrix Composites 362. \' b! q0 X* P
9.9 Cellular Solids 363
! d! W) b3 X+ N; z6 J9.10 Piezoelectric Composites 366. X# H% X; [7 a0 h
9.11 Dispersion of Waves in Composites 366
' Q4 u/ h  U5 f& A9.12 Summary 367- s% B0 e9 r  [. U
9.13 Examples 367
/ I8 V! b8 c7 X8 s, ]. ]% A$ Q9.14 Problems 370
8 Z% u: `, O9 d$ _& x6 z- HBibliography 370/ T  u$ E2 {& `3 X- ]. m9 Y
0 c# w1 ]! @5 m- h# z6 _
& `: [; a- N5 e7 b4 L

1 w. a7 s2 A  o# c10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
7 ?  I" B# G/ r) ^10.1 Introduction 377
! g/ h  P& M+ A8 }1 T10.2 A Viscoelastic Earplug: Use of Recovery 3778 U3 I3 f8 j5 y4 Z
10.3 Creep and Relaxation of Materials and Structures 378; E0 E$ f  t0 J3 ~/ ]! w4 G
10.3.1 Concrete 3782 n3 j6 g2 v4 \
10.3.2 Wood 378: s/ G* n* A7 t' F; j7 v3 U& L8 {4 p  t
10.3.3 Power Lines 379( ]8 e6 x- M2 ^* g; X
10.3.4 Glass Sag: Flowing Window Panes 380
$ k3 Z2 Z: Q) L9 ~+ Y" p10.3.5 Indentation: Road Rutting 380$ o* c7 j# c6 D/ i
10.3.6 Leather 381
2 @1 d7 ^# n' V10.3.7 Creep-Resistant Alloys and Turbine Blades 3819 D6 o( c9 R$ X( P9 l9 @7 p0 N
10.3.8 Loosening of Bolts and Screws 382
1 N& a/ t" K. w8 B10.3.9 Computer Disk Drive: Case Study of Relaxation 384
# ~6 y; q8 v& ^5 @; W/ {5 `; O( g10.3.10 Earth, Rock, and Ice 385" r% C; D; ]9 C
10.3.11 Solder 386. a  a; M! }/ T& P& g( l/ a7 ]( \  F/ t; k
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387, `0 A. o$ k5 T
10.3.13Tires: Flat-Spotting and Swelling 388
; B+ o" n) U9 {" h1 L8 ]" h10.3.14Cushionsfor Seats and Wheelchairs 388- h5 R; ?7 d& e  R- U1 e3 S9 ]
10.3.15 Artificial Joints 3893 [1 \! D$ e# ]  w7 @8 i
10.3.16 Dental Fillings 389
/ |& ?$ p, K; W; w: A; J/ C10.3.17 Food Products 389' P" I$ S; w2 E5 ^( O
10.3.18 Seals and Gaskets 390
# P9 l: t" Y6 ^4 x. G10.3.19 Relaxationi nM usical Instrument Strings 390
0 F: V5 c) a. R, R; M9 v5 h10.3.20 Winding of Tape 391: b8 c3 v* W6 i, @$ s& s
10.4 Creep and Recovery in Human Tissue 391* r6 ^( R5 n, M  f
10.4.1 Spinal Discs: Height Change 391- M5 r/ P/ n/ m0 Q. p/ p% i
10.4.2 The Nose 3925 f  ]' Y2 }1 J5 o& y1 v
10.4.3 Skin 392! _7 ?' @6 B$ B- c5 @* F, M
10.4.4 The Head 3938 B! C; x1 w- {, v, n# H- V
10.5 Creep Damage and Creep Rupture 394
% B! ], C1 V" F; F10.5.1 Vajont Slide 394
4 D+ Y, M- A* I. F9 r; p/ T/ T10.5.2 Collapse of a Tunnel Segment 3944 r8 f9 G5 K/ R
10.6 Vibration Control and Waves 394
8 O' v9 m6 y% v# B: l- H10.6.1 Analysis of Vibration Transmission 394
0 `0 q) g. D1 j& b3 H8 I" X& P10.6.2 Resonant (Tuned) Damping 397
% m1 [" i- A  ]& K6 p. h/ |10.6.3 Rotating Equipment Vibration 397& ~, N2 l" ~/ v0 i* _
10.6.4 Large Structure Vibration: Bridges and Buildings 398% e8 ^( M- V- s% h
10.6.5 Damping Layers for Plate and Beam Vibration 399
9 t# i" C' f7 A+ b4 X" v% E4 Y10.6.6 Structural Damping Materials 400
$ Y, A9 {3 [( h0 @10.6.7 Piezoelectric Transducers 402
8 C$ \! N, m0 `8 W10.6.8 Aircraft Noise and Vibration 402% ?* \2 j; l/ M7 n: b) Q4 k3 j! i
10.6.9 Solid Fuel Rocket Vibration 404, u- b( W* Z3 x) w; l
10.6.10 Sports Equipment Vibration 404( v) Y" [7 }5 l. ^# Z
10.6.11 Seat Cushions and Automobiles: Protection of People 4040 s; [5 D, E( i3 w& i; a
10.6.12 Vibrationi n ScientificI nstruments 406
* ]% R4 z& c& O9 }. K; F% U10.6.13 Waves 406
. O$ \( N1 \0 t0 O6 \% c) }10.7 “Smart” Materials and Structures 407% n. D; M* E- u2 W  v/ w
10.7.1 “Smart” Materials 407
2 }) [- A! A( t5 W+ `6 T10.7.2 Shape Memory Materials 408. K- s) e* p' R4 d( l1 c) H
10.7.3 Self-Healing Materials 409
6 r' K: }+ g0 `3 o3 \/ M  ~) ~10.7.4 Piezoelectric Solid Damping 409
* [! T2 q4 f& K+ z2 H7 N10.7.5 Active Vibration Control: “Smart” Structures 4099 i0 p1 V; `8 L9 @5 y) ]
10.8 Rolling Friction 409
9 l8 f3 \  g& h, l( A: G6 G10.8.1 Rolling Analysis 410
" y6 J$ N' X5 d10.8.2 Rolling of Tires 411
5 d( u! P3 Y! k! X; q1 z, i10.9 Uses of Low-Loss Materials 412
2 H& E! O/ |& e! `10.9.1 Timepieces 412: B0 k# x6 q+ X
10.9.2 Frequency Stabilization and Control 413
. c7 J8 ^( T3 m- F7 e( f. w10.9.3 Gravitational Measurements 413# _; ^3 y" r0 N9 I
10.9.4 Nanoscale Resonators 414
7 W  z$ ?8 q5 _' e# k10.10 Impulses, Rebound, and Impact Absorption 414
2 e0 ^% w, G. U8 d10.10.1 Rationale 414. p2 [+ H5 X0 n- i7 F1 k" r- r
10.10.2 Analysis 415- |( d5 i+ r" W  o. K
10.10.3 Bumpers and Pads 418: f5 M1 C4 L: `, c+ L1 n( A9 L# H
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
0 S& h+ S8 z) w7 A* U+ k10.10.5 Toughness of Materials 419
2 U0 d5 a5 k9 O0 K4 I" Q3 R10.10.6 Tissue Viscoelasticity in Medical Diagnosis 4201 ^! n7 z$ m: M  I: A# p4 d
10.11Rebound of a Ball 421% S, Q+ I* t6 q# E
10.11.1 Analysis 421
" q( e& J, o0 Z9 ?' F1 G10.11.2 Applications in Sports 422
2 G) @  n  l1 v! u10.12 Applications of Soft Materials 424( X+ {, S# k) a$ W
10.12.1 Viscoelastic Gels in Surgery 424
3 x3 a+ Y9 E* |0 s2 f7 M10.12.2 Hand Strength Exerciser 424
+ k0 Y+ {) ~2 \" C/ ]8 \3 v10.12.3 Viscoelastic Toys 4241 E5 m: |+ u( V: N7 A
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
1 X+ P- n& c9 ~! T. W10.13 Applications Involving Thermoviscoelasticity 425/ k; j/ q# T; z8 F9 E
10.14 Satellite Dynamics and Stability 426
, R6 W7 `. F( {10.15 Summary 428- j5 d( O  q& h+ }) d& B
10.16 Examples 429* D, X  c9 h* Q+ y4 x
10.17 Problems 431& v! M: H6 P( o$ V' g) u
Bibliography 431
. l& a2 _# w# c& {9 L! p# L$ ?5 c* X

# D; j6 N2 g0 B. B( e9 \
2 X: S! O; o) lA: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
" f) ]4 |0 S/ KA.1 Mathematical Preliminaries 441
  b& H6 U2 z4 D2 }$ aA.1.1 Introduction 4415 Y5 y9 p+ X, X- M, P- Z9 B! A* B+ F
A.1.2 Functionals and Distributions 441! [  l* g/ B1 [) Y: {
A.1.3 Heaviside Unit Step Function 442) k& p" y0 O7 s7 U$ V# k' r8 u
A.1.4 Dirac Delta 4423 s' d0 @2 _+ X2 z4 n/ @* W/ a
A.1.5 Doublet 443
  R& H  D- M# p/ q7 PA.1.6 Gamma Function 4458 L' W6 r$ G4 B: q7 o$ j+ p! P
A.1.7 Liebnitz Rule 445
% Z: p: k$ ?' R; O( I& L2 ~  CA.2 Transforms 445
0 Q3 u1 `- s; n$ B$ C  c9 u5 ~4 jA.2.1 Laplace Transform 446
: Y5 d5 M/ v" ^A.2.2 Fourier Transform 446
! }% \3 I: {! eA.2.3 Hartley Transform 447& J% u. O" ]6 E5 Y' @. ?
A.2.4 Hilbert Transform 4472 g# o8 ~( U% ?- F/ p+ x! Y8 g  t
A.3 Laplace Transform Properties 448
# ^, N1 T' J* Y& {8 t9 HA.4 Convolutions 449
1 J+ s5 d) \. k* Q  _% }/ pA.5 Interrelations in Elasticity Theory 451, c: [" X2 C4 Y) D9 M2 o0 i
A.6 Other Works on Viscoelasticity 451
, {0 A; {9 Y7 o4 V* MBibliography 452# R7 {! J2 V  e
  Q; c. `; \$ J- |4 R

1 {# j+ v4 h8 ~& ]5 i' S  C2 hB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
  D1 L6 |, a, Z0 j8 Y- W6 y; U& d  jB.1 Principal Symbols 4556 t& V4 U2 E% }: c* |$ F
Index 457
1 d2 r7 n: T1 ]: s. k( ^6 [' t1 U. ]+ W  g1 Y. G

' O( X  R. Q! ?. Z, T
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-11-13 23:08 , Processed in 0.064576 second(s), 22 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表