|
在传统逻辑中,公理是没有经过证明,但被当作不证自明的一个命题。因此,其真实性被视为是理所当然的,且被当做演绎及推论其他(理论相关)事实的起点。当不断要求证明时,因果关系毕竟不能无限地追溯,而需停止于无需证明的公理。通常公理都很简单,且符合直觉,如“a+b=b+a”。 ( R# c9 X6 v* U4 d" {, Q9 ?不同的系统,会预计不同的公理。例如非欧几何的公理,和欧氏几何的公理就有一点不同。比如说我们看欧式几何。在几个简单的公理假设下,我们可以得到一系列的结论,很多是深刻的,甚至是反直觉的。在建立这个模型之后,一个重要的问题就是我们需要几个公理来建立这个模型。比如欧式几何的每个公设是可以由其他公理得出的一个定理/结论?还是必须也是一个公理?. x7 F) O4 c; a: i# U% c( X 比如欧式几何里“过给定直线外一点,有且仅有一条直线与之平行”在很长时间内是不清楚它的位置的,后来发现对于欧式几何,你可以认为是这个体系的“公理”,只有认定它,才有后来的美妙结论。* m/ {5 ~0 h% ^ a6 b7 R: j$ ] 没有它呢?那时你就进入了另一个模型,你会得到其他的美妙结论:) ) H" o# X$ Y: s4 d2 N% k所以,在不同的公理假设下,我们得到了不同的数学体系,以此为基础,我们就可以得到对现实和对数学本身的各种模型。这种公理化的一个好处是,当你觉得现在的数学模型并不适合现实,或者并不满足理论发展需要时,有可能只是你假设了太多的公理前提,换一套公理,换一套前提,你就能得到很不一样的数学体系,原本的困难可能就很容易解决了。3 ]2 G6 c" p+ X 不证自明性是公理的特点,这也是为什么数学家质疑欧几里得的第五公设——平行公理的原因,平行公理看起来并不象其他几条公理一样明白了当(比如第一条公设:任意两个点可以通过一条直线连接),而非欧几何的建立,也正说明了第五公设的不必要性。 $ |; p* m/ W! ]! S8 I从一方面说,公理也可以看作是对于一些一般经验的总结,这些总结是无可争议的正确的,还用第一公设说,“任意两个点可以通过一条直线连接”不管这直线如何定义,总之两点之间可以连出一条线(天知道在哪一维空间里就是一条直线叻?),这既符合直觉,也是简单明确的事实。 0 Q7 U1 P8 H# p% U; r* S从数学逻辑的角度,要证明一个定理就要证明导出这个定理的定理,进而要证明导出导出这个定理的定理的定理.......这样一直往回走,我们需要证明一个定理串,如果这个过程无限回溯显然是不可接受的,必须要有一些“东西”作为这个定理串的源头,回溯的过程终止与这个源头,这个源头我们就说它是“公理”,当然如果这个源头与某条已知公理违背,则这一串就都是假命题了。. y" n; u( X* [5 r( w* s- g 扯远了,回到公理上来,形式主义数学家如希尔伯特,就通过建立形式化公理体系,把数学带到了一个更加严密的世界中来了。每一套公理体系中的公理,必须互相独立,且相容,否则就有矛盾了。所以一个公理背后是一套公理体系,这样就构成了一套数学的基础。 6 x3 R; J$ |4 [, A% S4 o7 ~- G; v8 H数学的图景也没有那么统一的,一套非偶的公理体系,就一个非偶几何空间(当然希尔伯特老先生的几何公理体系吧几何学统一了.....可不可以不要这么强大嘛~~);一个连续统假设,分出两个数学的世界,+ k7 r6 W! }# K' R: t 总之公理,公理体系,就是数学的的底桩。 . P7 D6 Z N' u% G2 ~+ ]- ]! A8 e4 a3 s" M0 P 点评: ' ~' R6 `1 y8 t那问题就来了,三角形的内角和为什么是180度7 ^" R5 i$ B5 I
/ c. u) z- _, [% ^; L( B7 a p |
|