伺服电机的选择 伺服电机:伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移;可以将电压信号转化为转矩和转速以驱动控制对象。 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 闭环半闭环:格兰达的设备用伺服电机都是半闭环,只是编码器发出多少个脉冲,无法进行反馈值和目标值的比较;如是闭环则使用光栅尺进行反馈。 开环步进电机:则没有记忆发出多少个脉冲。 伺服:速度控制、位置控制、力矩控制 增量式伺服电机:是没有记忆功能,下次开始是从零开始; 绝对值伺服电机:具有记忆功能,下次开始是从上次停止位置开始。 伺服电机额定速度3000rpm,最大速度5000 rpm; 加速度一般设0.05 ~~ 0.5s 计算内容: 1.负载(有效)转矩T<伺服电机T的额定转矩 2.负载惯量J/伺服电机惯量J< 10 (5倍以下为好) 3.加、减速期间伺服电机要求的转矩 < 伺服电机的最大转矩 4.最大转速<电机额定转速 伺服电机:编码器分辨率2500puls/圈;则控制器发出2500个脉冲,电机转一圈。 1.确定机构部。 另确定各种机构零件(丝杠的长度、导程和带轮直径等)细节。 典型机构:滚珠丝杠机构、皮带传动机构、齿轮齿条机构等 2.确定运转模式。 (加减速时间、匀速时间、停止时间、循环时间、移动距离) 运转模式对电机的容量选择影响很大,加减速时间、停止时间尽量取大,就可以选择小容量电机 3.计算负载惯量J和惯量比(x kg. )。 根据结构形式计算惯量比。 负载惯量J/伺服电机惯量J< 10 单位(x kg. ) 计算负载惯量后预选电机,计算惯量比 4.计算转速N【r/min】。 根据移动距离、加速时间ta、减速时间td、匀速时间tb计算电机转速。 计算最高速度Vmax x tax Vmax + tb x Vmax + x tdx Vmax = 移动距离 则得Vmax=0.334m/s(假设) 则最高转速:要转换成N【r/min】, 1)丝杆转1圈的导程为Ph=0.02m(假设) 最高转速Vmax=0.334m/s(假设 N = Vmax/Ph = 0.334/0.02=16.7(r/s) = 16.7 x 60 = 1002(r/min)< 3000(电机额定转速) 2)带轮转1全周长=0.157m(假设) 最高转速Vmax=1.111(m/s) N = Vmax/Ph = 1.111/0.157 = 7.08(r/s) = 7.08 x 60 = 428.8 (r/min)< 3000(电机额定转速) 5.计算转矩T【N . m】。 根据负载惯量、加减速时间、匀速时间计算电机转矩。 计算移动转矩、加速转矩、减速转矩 确认最大转矩:加减速时转矩最大 < 电机最大转矩 确认有效转矩:有效(负载)转矩 < 电机额定转矩 6.选择电机。 选择能满足3~5项条件的电机。 1.转矩[N.m]:1)峰值转矩:运转过程中(主要是加减速)电机所需要的最大转矩;为电机最大转矩的80%以下。 2)移动转矩、停止时的保持转矩:电机长时间运行所需转矩;为电机额定转矩的80%以下。 3)有效转矩:运转、停止全过程所需转矩的平方平均值的单位时间数值;为电机额定转矩的80%以下。 Ta:加速转矩 ta:加速时间 Tf:移动转矩 tb:匀速时间 Td:减速转矩 td:减速时间 tc:循环时间 2.转速:最高转速 运转时电机的最高转速:大致为额定转速以下;(最高转速时需要注意转矩和温度的上升) 3.惯量:保持某种状态所需要的力 步进电机 步进电机:是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 1.步进电机的最大速度600~~~1200rpm 加速度一般设0.1s~~~1s 1.确定驱动机械结构 2.确定运动曲线 3.计算负荷转矩 4.计算负荷惯量 5.计算启动转矩 6.计算必须转矩 7.电机选型 8.选型电机验算 9.选型完成 选定电机: 1.负载惯量J/伺服电机惯量J< 10 (5倍以下为好) 2.在起动脉冲速度f1时,起动转矩>负载转矩T 3.在最大脉冲速度f0时,离开转矩(是不是必须转矩)>负载转矩T 步进选型计算见(KINCO 步进选型中12页的例题) 伺服选型计算见(松下伺服选型计算伺服电机选型方法) 1千克·米(kg·m)=9.8牛顿·米(N·m)。 脉冲当量(即运动精度)&= <0.05 (0.05为重复定位精度) 200为两相步进电机的脉冲数 m为细分数 200=360/1.8 i减速比1/x C电机转一圈的周长 无减速比电机转一圈丝杠走一个导程 电机转速(r/s) V= P为脉冲频率 例: 已知齿轮减速器的传动比为1/16,步进电机步距角为1.5°,细分数为4细分,滚珠丝杠的基本导程为4mm。问:脉冲当量是多少? 脉冲当量是每一个脉冲滚珠丝杠移动的距离 滚珠丝杠导程为4mm,滚珠丝杠每转360°滚珠丝杠移动一个导程也就是4mm 那么每一度移动(4/360)mm 电机4细分,步距角为1.5°,则每一个脉冲,步进电动机转1.5/4 那么一个脉冲,通过减速比,则丝杠转动(1.5/4)*(1/16)度 那么每个脉冲滚珠丝杠移动距离(及脉冲当量)&: &=(1.5/4)*(1/16)*(4/360)=0.0003mm或者&= <0.05 例: 必要脉冲数和驱动脉冲数速度计算的示例 下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。 1.1 驱动滚轴丝杆 如下图,2相步进电机(1.8°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下: 必要脉冲数= | 100 10
| × | 360° 1.8° | ×细分数m= [脉冲] |
例: 精度要求0.01mm的雕刻机,导程5mm,步进电机驱动器一般用多少细分好呢? 如果确认是“精度”而不是“分辨率”的话,要考虑误差问题。 一,1)、你选择丝杠本身精度要高于0.01mm, 2)、其次电机细分只表示了分辨率,并不等同于电机精度。 假设你丝杠精度0.005mm,那么剩给电机的允许误差也就只有0.005mm了(暂不考虑其他误差因素) 0.005//5*360=0.36,表示你的电机精度要高于0.36度,所以你要选择绝对精度高于0.36度的电机。 二,至于细分,就简单了。 0.01/5*360=0.72;表示步进角0.72度时可达到0.01mm的分辨率 360/0.72=500;表示0.01mm分辨率时,电机一圈500步即可。 在实际使用时,你要尽可能选择细分高些,一方面提高运动平稳性,一方面也提供更高的步进分辨率。 滚珠丝杠的选型 一. 已知条件:UPH、工作台质量m1、行程长度ls、最高速度Vmax、加减速时间t1和t3、 定位精度+-0.3mm/1000mm、往复运动周期、游隙0.15mm 二. 选择项目:丝杠直径、导程、螺母型号、精度、轴向间隙、丝杠支撑方式、马达 三. 计 算: 1.精度和类型。(游隙、轴向间隙)0.15mm,选择游隙在0.15以下的丝杠,查表选择直径32mm以下的丝杠。32mm游隙为0.14mm。 为了满足+-0.3mm/1000mm则,+-0.3mm/1000=x/300 则x=+-0.09mm. 必須選擇± 0.090mm / 300mm 以上的導程精度。参照丝杠精度等级,选择C7级丝杠。 丝杠类型:根据机构确定丝杠类型是:轧制或研磨、定位或传动 2.导程。(以直线速度和旋转速度确定滚珠丝杠导程) 导程和马达的最高转速 Ph>=60*1000*v/(N/A) 1.Ph: 丝杆导程mm 2.V:预定的最高进给速度m/s 3.N:马达使用转速rpm 4.A:减速比 3.直径。(负载确定直径)动载荷、静载荷;计算推力,一般只看动载荷 轴向负荷的计算:u摩擦系数;a=Vmax/t 加速度;t加减速时间; 水平时:加速时承受最大轴向载荷,减速时承受最小载荷;垂直时:上升时承受最大轴向载荷,下降时承受最小载荷; 1.加速时(上升)N:Fmax=u*m*g+f-m*a 2.减速时(下降)N:Fmin=u*m*g+f-m*a 3.匀速时 N:F匀 =u*m*g+fu 因螺桿軸直徑越細,螺桿軸的容許軸向負荷越小 4.长度。(总长=工作行程+螺母长度+安全余量+安装长度+连接长度+余量)。如果增加了防护,比如护套,需要把护套的伸缩比值(一般是1:8,即护套的最大伸长量除以8)考虑进去。 5.支撑方式。固定-固定 固定-支撑 支撑-支撑 固定-自由 6.螺母的选择: 7.许用转速计算: 螺桿軸直徑20mm 、導程Ph=20mm 最高速度Vmax =1m/s 则:最高轉速 Nmax=Vmax * 60 * /Ph 许用转速(临界转速) N1=r * (d1/ )* r安装方式决定的系数;d1=丝杠轴沟槽谷径;l=安装间距 所以有:最高转速 < 许用转速 8.刚度的选择 9.选择马达 *验证:刚度验证、精度等级的验证、寿命选择、驱动转矩的选择 *滚珠丝杠副预紧:1.方式:双螺母垫片预紧、单螺母变位导程预紧、单螺母增大滚珠直径预紧; 2.目的:消除滚珠丝杠副的轴向间隙、增大滚珠丝杠副的刚性、 *DN值: D:滚珠丝杠副的公称直径,也为滚珠中心处的直径(mm); N:滚珠丝杠副的极限转速(rpm) *导程精度、定位精度、重复定位精度 导程精度:1.有效行程Lu内的平均行程偏差e(um),ep=2*(Lu/300)* V300<=C ; 2.任意300mm行程内行程变动量V300(um),V300<= 定位精度:1). 导程精度 2).轴向间隙 3)传动系统的轴向刚性 4)热变形 5)丝杠的运动姿势 重复定位精度:预紧到负间隙的丝杠,重复定位精度趋于零; 直线导轨的选择 1. 直线导轨的运动精度: 1) 运动精度:a:滑块顶面中心对导轨基准底面的平行度;b:与导轨基准侧面同侧的滑块侧面对导轨基准侧面的平行度。 2) 综合精度:a:滑块上顶面与导轨基准底面高度H的极限偏差;b:同一平面上多个滑块顶面高度H的变动量;c:与导轨基准侧面同侧的滑块侧面对导轨基准侧面间距离W1的极限偏差;d: :同一导轨上多个滑块侧面对导轨基准侧面W1的变动量。 3) 导轨上有超过两个以上的导轨,只检验首尾两个滑块,中间的不做W1检验,但中间的W1应小于首尾的W1。 2. 选择: 1---确定轨宽。 轨宽指滑轨的宽度。轨宽是决定其负载大小的关键因素之一 2---确定轨长。 这个长度是轨的总长,不是行程。全长=有效行程+滑块间距(2个以上滑块)+滑块长度×滑块数量+两端的安全行程,如果增加了防护罩,需要加上两端防护罩的压缩长度。 3---确定滑块类型和数量。 常用的滑块是两种:法兰型,方形。前者高度低一点,但是宽一点,安装孔是贯穿螺纹孔,后者高一点,窄一点,安装孔是螺纹盲孔。两者均有短型、标准型和加长型之分(有的品牌也称为中负荷、重负荷和超重负荷),主要的区别是滑块本体(金属部分)长度不同,当然安装孔的孔间距也可能不同,多数短型滑块只有2个安装孔。滑块的数量应由用户通过计算确定,在此只推荐一条:少到可以承载,多到可以安装。滑块类型和数量与滑轨宽度构成负载大小的三要素。 4---确定精度等级。 任何厂家的产品都会标注精度等级,有些厂家的标注比较科学,一般采用该等级名称的第一个字母,如普通级标N,精密级标P。 5---确定其他参数 除上述4个主要参数外,还有一些参数需要确定,例如组合高度类型、预压等级等。预压等级高的表示滑块和滑轨之间的间隙小或为负间隙,预压等级低的反之。感官区别就是等级高的滑块滑动阻力大,等级低的阻力小。表示方法得看厂家选型样本,等级数有3级的,也有5级的。等级的选择要看用户的实际使用场合,大致的原则是滑轨规格大、负载大、有冲击、精度高的场合可以选预压等级高一点的,反之选低一点。提示:1--预压等级与质量无关,2—预压等级与滑轨使用精度成正比,与使用寿命成反比。 尺寸链的基本术语 1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链。间隙A0与其它尺寸连接成的封闭尺寸组,形成尺寸链。 2.环——列入尺寸链中的每一个尺寸称为环,A0、A1、A2、A3…都是环。长度环用大写斜体拉丁字母A,B,C……表示;角度环用小写斜体希腊字母α,β等表示。 3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一环称为封闭环。封闭环的下角标“0”表示。 4.组成环——尺寸链中对封闭环有影响的全部环,称为组成环。组成环的下角标用阿拉伯数字表示。 5.增环——尺寸链中某一类组成环,当其他组成环的大小不变,若封闭环随着某组成环的增大而增大,则该组成环为增环。 6.减环——尺寸链中某一类组成环,当其他组成环的大小不变,若封闭环随着某组成环的减小而减小,则该组成环为减环。 7.补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,使封闭环达到规定的要求,该组成环为补偿环。 封闭环:基本尺寸:A0=Ap1+Ap2 -Aq3 上偏差:ES0=ESp1+ESp2-EIq3 下偏差:EI0=EIp1+EIp2-ESq3 A0:封闭环 Ap1、Ap2:增环 Aq3:减环 w 封闭环基本尺寸=所有增环基本尺寸-所有减环基本尺寸; w 封闭环的上偏差=所有增环的上偏差-所有减环的下偏差; w 封闭环的下偏差=所有增环的下偏差-所有减环的上偏差。 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺(随炉冷却)。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或 (钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的 力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到 Ac3 或 Ac1(钢的下临界点温度)以上某一温度,保持一 定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目 的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到 Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。 回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。 7.渗氮: 正火:850淬火:840 回火:600
|