angel1399793 发表于 2013-8-19 07:21 * [, M; @: B6 d8 D" x% g3 G! |
电扇的叶片相对轴都是斜的吧,道理就在这里
1 J8 `! O9 L4 q9 X当电扇转动的时候,叶片会推动空气,说白了就是斜的叶片会对空 ...
7 W+ ^3 G# C, e1 Z找到了点
' b, p# [: `1 @3 M: [
% |4 n4 }0 k; f* V扇叶:
1 g4 b3 @3 y, ~0 _ 常见的风扇扇叶截面曲线,一般基于Joukowski(茹科夫斯基,俄国著名的空气动力学家,当代航空科学的开拓者,提出了茹科夫斯基函数,奠定了机翼空气动力计算的理论基础)机翼截面曲线设计,再按照设计需要,根据叶片根部及端部与旋转轴之夹角、根部及端部宽度等数据进行旋转堆叠,形成三维扇叶曲面,并进行曲线拟合,最终完成整个扇叶模型设计。
! _' ^0 m: {6 P: f 扇叶的性能受到众多参数的影响,如层叠高度、叶片曲率、叶片倾角、叶片间距、叶片厚度、叶片数目、叶片冲角、叶端间隙、叶片宽度、主轴直径等等,且各参数间互相制约,关系复杂。不断的调整各项参数,寻找最适合目标工作要求的组合,便是进行扇叶设计的研究人员所从事的工作。若要将这些参数全部解释清楚并加以分析,足以写出几篇博士论文了,但本文只是浅要分析风冷散热器的相关技术,实无此必要,笔者也尚无此能力-_-。因此,仅将几个用户较为关注的参数略加介绍: 5 `4 s2 b' t, A9 r$ D2 |
叶片曲率:在一定范围内,叶片曲率越大,相同转速下,气体动能也就越大,即风量与风压越大;同时,叶片所受的阻力也越大,要求电机的扭力更大。当弧高/弦长的比值超过0.1时,升力系数便不再呈线性增加,故“一定范围”即0.05<弧高/弦长<0.1。 9 O3 _) B, y- f7 p1 k
叶片倾角:倾角越大,叶片上下表面间压力差越大,相同转速下风压越大;但上表面压力过大,可能产生回流现象,反而降低风扇性能。因此,叶片倾角也应在一定限度内提升。 . k- G- h% b5 [- Z
叶片间距:叶片间的距离过小,会导致气流扰动,增加叶片表面的摩擦,降低风扇效率;叶片间的距离过大,则会导致压力损失增大,风压不足。
2 }7 ^5 N d0 [' G 叶片数目:各种规格风扇叶片的截面曲线、倾角等基本相若,每片叶片宽度往往取决于扇叶的高度。为了保证叶片间距不致过大,影响风压,径高比较小(即相对较薄)的风扇多采用增加叶片数目的方法弥补。不论叶片数目是多是少,轴流风扇的叶片数目却往往是3、7、11等奇数,这是由于若采用偶数片形状对称的扇叶,又没有调整好平衡,很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂,因此多设计为关于轴心不对称的奇数片扇叶设计。这一原则普遍应用于包括部分直升机螺旋桨在内的各种扇叶设计中。 ( X/ T7 ?4 K+ v; W9 w" o! Y
叶端间隙:如何调整扇叶与外框之间所存在的间隙是风扇设计中的一大难题。间隙过小会令此间气流与叶片、外框发生摩擦,增大噪音;增大间隙则会由于反激气流等影响耳降低风扇效率——间隙增大1%,则全压功率下降约2%。
, A% Z3 p$ o% D) j- W6 G 叶片弧度:扇叶除了在截面上具有一定曲率外,在俯视平面内也并非沿着径向笔直延伸,而是向着旋转方向略有弯曲,呈一定弧度。如果叶片沿径向笔直延伸,风扇旋转所带动的气流在出风口一侧将呈散射状,送风距离短,且“力量”不集中;如现行产品版略带弧度,则可保证吹出气流集中在出风口正前方的柱状空间内,增加送风距离与风压。
$ {8 Z2 Q0 o9 T' q2 X 主轴直径:由于电机与轴承的存在,轴流风扇主轴所在的中心部分难免一定无气流通过的盲区,主轴直径便决定着此盲区的大小。主轴直径的大小则主要取决于风扇电机的功率——大功率的电机需要更大的定子绕组线圈,必然占用更多的空间,在无法纵向扩展(增加高度)的情况下,便只好横向扩展(增大面积)。 * g! `: ^: }3 U+ V) m
叶片光滑度:这是一项非设计因素影响的指标,基本上取决于生产者的模具成形与后期处理工艺。在设计曲线之外,叶片上的不平整会在旋转中产生紊流,增加摩擦,降低风扇效率,折损风扇性能,增大工作噪音。因此,应对叶片表面的光滑度严格控制,如果所购产品处理不佳,则应考率采用手工打磨等后续手段弥补。
/ N& B8 a" X: g; j |