首先说,我就是个初级水平的行子,多数情况下,体会多余经验。所以,不足之处也还希望诸位多多包涵和指教。8 p* g# t1 f t 回正文。 0 Q" `0 e0 l% U' L( s- Q3 r6 Q% R* g) X# P 前些日子提到了测量,也看到了有些朋友关于数学和数模的困惑。结合这些年来的一些感触,借这个平台跟大家分享下,讨论下。 ; X- L' V) g: M( x% _# i4 U4 r3 G首先说测量。, `* i1 c1 c. E6 g d: z ( S& p* l1 ]- ~% b! | u4 S 扫大在之前的帖子里曾经这么问过我“测量有两种。一种是科班出身,各种仪器设备俱全。一种是作坊式,一把游卡量天下。楼主属于哪种。”呵呵。这个问题其实挺尖锐的。我想,在坐的诸位可能也有人有这样的想法或者疑惑吧。 4 Y2 v% \/ I9 o1 q( D* [ 0 H5 u$ {/ E6 j5 x1 l# U! Q" o挺让大家失望的,我可算不上什么科班出身,设备俱全;也不能说是作坊式,因为我不靠游卡走天下。在我的观念里,对测量的理解是有所不同的。相对于设备是否齐全和理论基础是否扎实,我更倾向于测量的目的分类。当然,这不是说扫大的提问有问题,只是每个人的理解和定位不同而已。如果按照目的性质来分类,测量大抵上可以分为“还原类测量(真实测量)”和“理论测量”。3 @! u A& f: y; T3 C
8 S6 V2 x* w! h还原类测量或者真实测量,是一种近最大程度真实反应实际参数或者真实再现设计参数的测量。比较典型的例子就是地理测量和施工测量。如同定义所说,这种类型的测量更多的要求是其准确性,而为了达到这种目的,选择适当的测量工具和正确使用这类工具就成为一种基础,而经验则是在这种基础上的更高级应用。这种类型的测量不紧包括测量本身,也包括相关的计算,如土方计算,地层描述等。这里面对于工具操作、数据读取统计、计算和描绘的理论与知识很多,也很深,对经验的考察也很重。比如搞地质测量的,就需要从一堆的信号图谱中读出不同的地层分布,分布面积、厚度等并根据这些计算相关资源的储量和可开采度。而这些,没有扎实的基础和若干年的积累是做不到的。还原类测量在机械行业中的应用,其针对性更强。例如实体分析、零件还原、数据对比等。典型的例子例如零件还原(比如高级曲面类零件的形状还原),比如材料力学试验,比如整体刚度试验与分析等。$ ~' f; F" y0 w: |2 A$ G
! K* w }! B9 T1 w) b理论测量,是一种基于理论计算、数据筛选、标准对照、二次开发或者再设计等基础之上的模糊数据统计法。这种测量方法的目的往往不是追求被测量物体的实际参数本身。我们通常所说的“山寨”其实属于这个范畴,但只是这种方法的部分应用,即理论测量的纯数据模糊拟合,其追求的是数据上的拟合度,而不是理论上的拟合度。举个例子说,比如一个简单的轴承滚子,山寨的做法是从数据上贴合这个被测量滚子的数据,也就是我们说的“形似”。按照现在科技的发展来看,这种贴合度甚至可以做到99%(因为3D扫描技术的出现和发展),但是其相应的问题就是,当被测物体的型号更换的时候,“山寨”所能做的就是再重新测量一遍。因为只是去贴合数据,你很难知道这个数据是如何来的,为什么要这样。而这也就是“山寨”到最后越玩越死的原因。而理论测量不只有这样。% e; _$ m4 g1 I' q* W8 c) |# K& j ( O4 W4 h. b& v. ]; z m* R 理论测量更注重的是理论基础上的数据贴合,即通过数据的贴合对现有理论及相应学科知识进行对比,再通过现有理论、数学模型等进行重新计算,将其结果通过统计的方法与实际测量的数据进行模糊对比,并以此为基础确定其计算基础和方法的正确性。举个简单的例子,比如说某种类型的万向节结构中有一段弧面,为了确定这段弧面,你测量的其相关的数据。而在这之后,理论测量要做的,不是把这些数据作立刻的拟合,而是将相关的环境数据收集在一起,重新建立起相关的实体模型和数学模型。这个模型可能是一种近似的,不准确的模型,但是通过这个模型的分析和计算,你能在原理上得到一个或几个和原实体设计原理近似的方案,然后通过这些方案再次计算结果,将各个结果同测量数据进行模糊对比,根据相似程度确定原实体的理论模型。并通过再次的对比分析,判断是否继续沿用这种原实体模型还是采用新模型,并将其存档。这种过程的测量方法比起直接数据拟合来,要困难许多,也慢许多,但是对于后期的研究、分析、实验、开发等有极大的好处。 $ A$ W( l+ c" @" M5 O# v# S1 N- k$ G9 u4 K1 \4 C" d/ I& W 必须要说,“还原类测量和理论测量虽然相互独立,但并不冲突,在需要的场合中,往往二者是同时应用的。”; S9 l1 v4 @2 I 多说一句,我也就勉强算是个后一类的初学者,第一类更谈不上,所学有限。呵呵。: o" @9 Z. J& x: @
) b9 |7 @* T+ y4 U. y其实,我们的生活中充满了后一种的测量方法。不是说山寨啊。比如说,你买了个门回来自己安装。没有人会傻乎乎的把门的尺寸精确到几道上,然后表标准准的在门框上画上线,保证精度的钻孔,上合叶装门。因为,没有这个必要,你的理论基础从一开始就判断出不需要做到这种程度,只要把门在门框上对好,不打架、不斜,不蹭就可以了。而其实,在这个过程中,你经历就是一个目测模糊数据,理论建模分析,结果对比拟合,决策的过程。说白了,其实大家都会用。所不同的是,当你的理论基础不够的时候,你很难做到这点。 - a! G* E% C% Q/ x) c$ \+ M ! z/ O1 b Y4 C6 |: z$ R, t/ W9 r7 ?数学。说起来,这个话题更大了。有人感觉数学很难,而且看不到有什么用处。感觉很迷茫。其实,数学就在我们身边,同机械息息相关。 6 u3 Q# t5 c. e- T; H 9 n) `1 d" e. }$ `. B让我们再回头看看上面说过的一些内容,其实你不难发现,在通篇的测量阐述里,我都没有离开数学的范畴。而在机械设计中,无论是机构原理设计,还是强度设计、寿命设计、加工设计等等,你都离不开数学。不同的是,有些地方可能因为经验的积累,高手们往往能迅速得出一个结论来,这使得很多新人感觉这里没有数学的事儿了,有经验就行。其实不是这样。举个例子可能更好说明一些。比如下面这个图。 * I- r, }% ? V7 L: a8 R2 I. G; A1 Y6 k! ^
4 `+ o. O0 C( L# \$ A
H4 m" g+ {( H) k这是某种万向节的头部结构。请注意滚动体下面壳体上的圆弧。那么从这个图中你怎么去判断这个万向节的运动方式。那两段圆弧又是什么样的?圆弧倒角吗?还是另有玄机。
+ S' f* }+ L+ v3 I# M" L
* v/ a! D$ H1 B
解决这个问题,你需要用到数学。先是原理分析,然后是运动分析,然后就是在这个基础上的数学模型建立(一会儿再简单说说数模)。当建立起数学模型之后,你就可以计算出这两段圆弧的轨迹曲线,并以此进行判断。当然这个过程不一定是唯一的,你可能需要对比筛选。
* Z3 L* v( \: `# ]$ Q
% V: z2 y8 R( G7 m f& A1 x6 G 有些人认为,画图是不是就没有数学了。比如说我就是个画图的,计算什么都可以不用我弄,我只要按尺寸画出来就行。这里是不是就没有数学了呢?一样的不是。数学无处不在。比如说,你是用sw画图的,当你遇到特殊曲线的时候你怎么办?比如说渐开线、摆线、环状螺旋线等等。不去建立数学模型,不去推导,那你剩下的方法只有求助于别人。你敢说你这算能画图吗?
9 [1 Q, Y" }9 h! K/ o g! e
& Y D7 K2 k! z$ o3 p; S/ q
: s3 g6 f/ G% L- z8 y V有人说,总说“数模”“数模”的,听着好高深,好遥远。其实,只是你把他想得太困难而止步于此了。比如说,有这么一个数模,某曲线的曲线方程是: x=r*cost; y=r*sint;那么当这条曲线沿X轴正向平移距离a后的曲线方程是什么?
; u- T: {7 y! B4 `! V
) u3 }7 g# x4 P; @
你很快就能答出: x=a+r*cost; y=r*sint。你看这不是很简单吗?这就是数模。不过是一种简单的数模。那些复杂的数模往往也是通过这些简单的数模组合而成的。
8 J: N4 n/ ?2 x: D `3 l/ m
+ U7 X# @3 g. e* ^1 i
0 W% m: m6 x, h$ v* W: o就说这么多吧。大家共同讨论,共同体会,共同分享,共同提高。
$ H) h$ g# B9 a8 i6 H& g
. F1 D( t: x1 C- T, |& l
|