机械必威体育网址

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 8154|回复: 19
打印 上一主题 下一主题

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
跳转到指定楼层
1#
发表于 2011-6-23 22:58:22 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
+ ?. Y/ b/ _) W5 Y9 D- w2 J* I1 J9 T* @* [$ Q7 ?* t, I  m
Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf
: s9 d; E; ?8 ~; {有要的吗?刀具,细节,很到位。英文版。7 ^( }" F, ?# G9 p4 m9 \9 B
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限: 90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限: 90, 下载次数: 7, 下载积分: 威望 -10 点

1

回复

使用道具 举报

2#
发表于 2011-6-24 19:17:16 | 只看该作者
说什么的?
回复 支持 反对

使用道具 举报

3#
 楼主| 发表于 2011-6-24 22:02:25 | 只看该作者
Although almost any book and/or text on metal cutting, cutting tool design, and
5 x: n' e; F5 ]; g! Xmanufacturing process discusses to a certain extent the tool geometry, the body of
2 ~, c2 W. n1 u: i, |1 Cknowledge on the subject is scattered and  confusing. Moreover, there is no clear + a9 `1 {- ?# T$ Q; D* w
objective(s) set in the selection of the tool geometry parameters so that an answer
& r7 P$ ]4 F0 S/ T+ R/ Fto a simple question about optimal tool geometry cannot be found in the literature
* Y) l5 @1 u# l. fon the subject. This is because a criterion (criteria) of optimization is not clear, on 6 D  j! E: \" m* D" B
one hand, and because the role of cutting tool geometry in machining process
. |0 z% b3 d. eoptimization has never been studied systematically, on the other. As a result, many ) l) s2 B* f, H
practical tool/process designers are forced to use extremely vague ranges of tool ; ~* D( R' K2 ]) [3 x. O7 J1 E  o5 w
geometry parameters provided by handbooks. Being at least 20+ years outdated, 3 k/ [. N- G- M3 N3 \6 s
these data do not account for any particularities of a machining operation including % u; u- |1 R9 F& j
a particular grade of tool material, the condition of the machine used, the cutting * Z7 X* U) E# [
fluid, properties and metallurgical condition of the work material, requirements to
5 |# D* r% R0 y: Zthe integrity of the machined surface, etc.
$ K4 `+ j: ]. F# L8 U6 KUnfortunately, while today's professionals, practitioners, and students are
0 A* o4 l  r9 M$ rinterested in cutting tool geometry, they are doomed to struggle with the confusing * n+ i0 p3 w  k
terminology. When one does not know what the words (terms) mean, it is easy to
* Y* {- D. J3 H4 v& Uslip into thinking that the matter is difficult, when actually the ideas are simple,
' C8 `, n( c" h4 h: b: X% L$ seasy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
4 G7 m9 q% _6 h; ^# mwall between many practitioners and science. This books attempts to turn those
4 P4 P# X; ~# a- Swalls into windows, so that readers can peer in and join in the fun of proper tool
9 r2 t2 C7 z" L+ pdesign.
5 {* y( i! a5 [! |8 W# x% v: kSo, why am I writing this book? There are a few reasons, but first and foremost, 3 P# D5 Q4 w1 R& w# n; b9 H) i) v
because I am a true believer in what we call technical literacy. I believe that , W5 U5 s% U1 `1 J2 G: j
everyone involved in the metal cutting business should understand the essence and
( q; F- d9 k9 f6 p. Z6 S4 wimportance of cutting tool geometry. In my opinion, this understanding is key to 7 p; [3 X* u8 V' y6 C5 p2 F: `
improving efficiency of practically all machining operations. For the first time, this ) u' I. [0 M, t, K
book presents and explains the direct correlations between tool geometry and tool 0 Q. Z9 x- `1 q2 }$ n' y8 j, ^: [
performance. The second reason is that I felt that there is no comprehensive book
8 }; N3 S7 e' J, son the subject so professionals, practitioners, and students do not have a text from : j1 ^1 V% ~, J$ |- ~% P; O9 E+ d
which to learn more on the subject and thus appreciate the real value of tool
8 U' v# L9 M  k" \8 M! \' A3 Z0 @/ egeometry. Finally, I wanted to share the key elements of tool geometry that I felt
  U+ C/ y' D5 j1 `5 S3 x* m9 _- P9 kwere not broadly understood and thus used in the tool design practice and in ; j( q  ^: P: p7 I
optimization of machining operations in industry. Moreover, being directly & C' m" d+ x3 ?4 ^
involved in the launch of many modern manufacturing facilities equipped with   k' W& O$ a% A5 ?+ T: z
state-of-the-art high-precision machines, I found that the cutting tool industry is not   n$ N7 n. T, Q
ready to meet the challenge of modern metal cutting applications. One of the key 1 k! P: u' y4 Z: Q( |8 x8 v
issues is the definite lack of understanding of the basics of tool geometry of
; \0 M- ~3 r9 K) d& ^standard and application-specific tools. ) K. ]$ a4 X5 B9 i& y6 `  b- U5 N
The lack of information on cutting tool geometry and its influence on the
$ W& o/ u9 ^6 c  f1 U, noutcome of machining operations can be explained as follows. Many great findings
$ {8 {) N' K6 c) _) lon tool geometry were published a long time ago when neither CNC grinding
3 z% {+ F; Y/ ^% xmachines capable of reproducing any kind of tool geometry were available nor
2 z' b% f/ Q( J( b+ D8 ]3 }were computers to calculate parameters of such geometry (using numerical
0 d, A$ G' W4 u9 ?& ?methods) common. Manual grinding using standard 2- and 3-axis simple grinding
3 f7 a' `2 B' t, m& \' Z  Lfeatures was common so the major requirement for tool geometry was the simpler
4 g. a5 g6 k5 \the better. Moreover, old, insufficiently rigid machines, aged tool holders and part % d/ v' z1 e# n
fixtures, and poor metal working fluid (MWF) selection and maintenance levered
! @9 W9 b8 ?- F* Q4 Wany advancement in tool geometry as its influence could not be distinguished under # c2 A+ J5 l- [. r% n8 k# D. x: j
these conditions. Besides, a great scatter in the properties of tool materials in the ' y8 r4 Y7 h. \$ L! K& Y9 }" I) R
past did not allow distinguishing of the true influence of tool geometry. As a result, 4 i: K4 O! B5 [8 h7 P* V3 o, C; y
studies on tool geometry were reduced to  theoretical considerations of features of $ c# A" Q- x3 K& \- o
twist drills and some gear manufacturing  tools such as hobs, shaving cutters, % {5 w* h5 J/ ]2 J: z: d
shapers, etc.  ! Z# c; }* t/ F3 r1 O- R
Gradually, once mighty chapters on tool geometry in metal cutting and tool : z* Q4 @4 s4 T
design books were reduced to sections of few pages where no correlation between
; y7 [8 q5 l4 ttool geometry and tool performance is normally considered. What is left is a
) C' a; L' B( y  Cgeneral perception that the so-called “positive geometry” is somehow better than . L2 \& ^3 J3 h$ V' N
“negative geometry.” As such, there is no quantitative translation of the word 3 ]; h- H, `/ k: ]) b
“better” into the language  of technical data although a great number of articles 0 C' y, |4 `2 B5 o+ g0 K1 B9 `7 x- }
written in many professional magazines discuss the qualitative advantages of 1 o6 F! b% r) Z2 i& T
“positive geometry.” For example, one popular manufacturing magazine article
% d4 E" R# K, v) G1 a2 Hread “Negative rake tools have a much  stronger leading edge and tend to push " f$ p4 a' e# e3 ~
against the workpiece in the direction of the cutter feed. This geometry is less free
: W2 C5 g  w$ D1 l% Ucutting than positive rakes and so consumes more horsepower to cut.” Reading
* K  E, a, Y* D8 U0 P0 Ythese articles one may wonder why cutting tool manufacturers did not switch their
2 g) B4 \& x( Q; U6 k" f4 Qtool designs completely to this mysterious “positive geometry” or why some of
$ v, Q8 o. t; o/ c) x: y1 R$ Z9 H7 tthem still investigate and promote negative geometry. ! a" A4 ~2 s0 Q# O& e4 p$ N' N
During recent decades, the metalworking industry underwent several important 5 G, ~4 M6 L& W$ s
changes that should bring cutting tool geometry into the forefront of tool design
4 f0 O- ?/ |' ]) V! i* j! Aand implementation:
回复 支持 反对

使用道具 举报

4#
 楼主| 发表于 2011-6-24 22:03:42 | 只看该作者
1   What Does It Mean “Metal Cutting”? ...........................................................1 4 [7 f- H, Z5 [
1.1   Introduction ...............................................................................................1
5 r! D# K6 D5 U- e( G2 ]- f1.2   Known Results and Comparison with Other Forming Processes ..............2 % W# {! ]  n6 U
  1.2.1   Single-shear Plane Model of Metal Cutting ...................................2 4 }6 R7 ~0 o; u& n+ R  _- P9 s/ ]1 V" Z
  1.2.2   Metal Cutting vs. Other Closely Related Manufacturing  + O4 K1 q$ D% D( m
Operations .................................................................................................5 % A; [" }$ w1 Z) ]: l, u0 J
1.3   What Went Wrong in the Representation of Metal Cutting?...................22
  T7 N; r7 l. U' A/ S9 N  1.3.1   Force Diagram..............................................................................23 0 u8 t0 q3 o1 D. I; L
  1.3.2   Resistance of the Work Material in Cutting.................................25 # J& `7 c# \, ]+ }  B! a
  1.3.3   Comparison of the Known Solutions for the Single-shear  
* J) G: l# \$ f* f, i4 J  Plane Model with Experimental Results .................................................27 1 y! Y8 w, z8 @/ _) X% L8 _8 P
1.4   What is Metal Cutting?............................................................................28
, R( i4 }# F- }; L' _3 p# m1 l  1.4.1   Importance to Know the Right Answer........................................28
2 g) Z7 E! `2 W4 w* d1 s8 T 1.4.2  Definition .....................................................................................28
. H2 y" {" i! H0 M  1.4.3   Relevance to the Cutting Tool Geometry.....................................29 5 C, ]) @3 @. _3 ~  u
1.5   Fundamental Laws of Metal Cutting.......................................................32 / H& v1 Y, ^9 v; Z
  1.5.1   Optimal Cutting Temperature – Makarow’s Law........................32 ; m( l) N6 {, r4 n& p/ z: Y8 s
1.5.2  Deformation Law.........................................................................35
0 V3 X( p, I+ T4 r, _& P1 fReferences........................................................................................................50 0 S* B9 H, j$ C
2   Basic Definitions and Cutting Tool Geometry,  : r/ X7 z$ R$ u* T* N
Single Point Cutting Tools ............................................................................55
1 F2 i) b9 m  E) r5 f2 ^1 K: a2.1   Basic Terms and Definitions ...................................................................55 9 j, W* t( `1 w( r
2.1.1  Workpiece Surfaces.......................................................................57
4 Z1 o* r$ [3 S& k5 D) Z% Q 2.1.2  Tool Surfaces and Elements ..........................................................57
. x# t! k& w' }9 V4 t 2.1.3  Tool and Workpiece Motions.......................................................57
% S4 X, Z, z3 R' N+ r9 j( ` 2.1.4  Types of Cutting ............................................................................58 * ^( K! K( {! g4 R' f1 O
2.2   Cutting Tool Geometry Standards...........................................................60
( T* {: M# M5 b; I. g0 V2.3   Systems of Consideration of Tool Geometry ..........................................61 ; z; C' g+ J: Q# g% g- Q
2.4.  Tool-in-hand System (T-hand-S) .......................................................643 ^" Z: [: R2 {" z0 @* p
  2.4.1   Tool-in-hand Coordinate System.................................................64
# t7 `, ]+ o/ @! l& i4 a+ b 2.4.2  References Planes ........................................................................66
& N+ R8 f. A! q5 L  D1 N 2.4.3  Tool Angles..................................................................................68 5 Z' x6 Z/ m" p$ D; ^" _2 [
  2.4.4   Geometry of Cutting Tools with Indexable Inserts ......................74
+ E+ N# }0 S' `, d  h2.5   Tool-in-machine System (T-mach-S)......................................................84
2 l# C9 Z4 t0 p  J 2.5.1  Angles ..........................................................................................84
# Y- Q, _8 x, d# W6 Z7 P/ z  2.5.2   Example 2.3 .................................................................................88 : m9 J; z+ z: h  |, Z! S
2.6   Tool-in-use System (T-use-S) .................................................................90
- u# }3 O/ y; l 2.6.1  Reference Planes ..........................................................................91 $ n" d& z) J# c
2.6.2  The Concept .................................................................................92 . L' N2 ~& w3 A" c6 V& ?8 s
  2.6.3   Modification of the T-hand-S Cool Geometry .............................92
5 Y+ {( M( Z1 s/ L! r8 }7 _  2.6.4   Kinematic Angles.........................................................................98
7 D  F1 W* g3 m8 {  2.6.5   Example 2.4 ...............................................................................100 " y: p0 ]8 H/ \* t. A9 o* m3 T
2.7   Avalanched Representation of the Cutting Tool Geometry  : J& D8 T4 G% V: T  ]; s/ l
in T-hand-S............................................................................................102
# ~% O+ q- a) U( r* S, O2 w 2.7.1  Basic Tool Geometry .................................................................102 2 a$ D1 X$ u* g# V% G" ^# J: k
2.7.2   Determination of Cutting Tool Angles Relation
  ]8 Q% ~3 O* g4 v5 s9 [' ^# y  for a Wiper Cutting Insert ..........................................................108 # C* F" u( G9 z/ |& p7 |
  2.7.3   Determination of Cutting Tool Angles  % q9 _8 H: n1 k; y' l4 e& k3 t7 V
   for a Single-point Tool ...............................................................110 ( h; r( h& ~3 S- _5 u  {5 s; A- H
  2.7.4   Flank Angles of a Dovetail Forming Tool .................................117   t$ K6 M; O7 I( L0 Y
  2.7.5   Summation of Several Motions..................................................119
) O) S- _! i5 U/ J1 j0 f& QReferences......................................................................................................125
5 |/ b, X% _0 u0 u# B3  Fundamentals of the Selection of Cutting Tool Geometry Parameters...127
! D0 r. x( Y2 P3.1   Introduction ...........................................................................................127
  M( U6 L2 J( W3.2   General Considerations in the Selection of Parameters  , ?6 m, L7 ]5 A! f1 z/ x+ j
  of Cutting Tool Geometry .....................................................................129 % h" X- g6 j1 Y2 F* }" L
3.2.1 Known Results .............................................................................129
$ i  |$ u! @- N5 |  3.2.2 Ideal Tool Geometry and Constrains............................................130 $ E+ A" {6 w) X" Q7 M& R. n' B
  3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...132 " s) `2 o' p3 ^2 a
3.3   Tool Cutting Edge Angles .....................................................................132 0 T& a7 b. q8 \# @% R0 V" N& q2 K
3.3.1  General Consideration................................................................132
: Z7 A( V! g# i$ p  3.3.2   Uncut ChipT in Non-free Cutting ..............................................134 9 P% `/ b1 \: c: j& L% f$ M/ q
  3.3.3   Influence on the Surface Finish..................................................142
: V$ K: j9 q+ o2 [8 ] 3.3.4  Tools with κr > 90°.....................................................................144
5 F& a% j' u/ P6 ]  3.3.5   Tool Minor Cutting Edge Angle ................................................147
) d8 H5 l/ a" i" Z3.4.  Edge Preparation ...................................................................................161
! P$ z' {5 y% r 3.4.1  General .......................................................................................161
1 N% {" E7 L5 a3 f  3.4.2   Shape and Extent........................................................................163
6 E3 W& ?2 ?' U7 s* F# g8 v% h 3.4.3  Limitations .................................................................................163 / a# B! y, y& N1 e! ]
  3.4.4   What Edge Preparation Actually Does.......................................169
1 X: X6 r7 o$ w& m; o: K3.5   Rake Angle............................................................................................171
2 g9 Z" V8 F/ c- \  ~ 3.5.1  Introduction................................................................................171 4 Z( Q7 c; |5 @6 Q4 h
  3.5.2   Influence on Plastic Deformation and Generazliations ..............175
% y0 J. Z  A& y/ ]6 x5 @  3.5.3   Effective Rake Angle .................................................................183
+ m/ z. H$ c8 V1 E  3.5.4   Conditions for Using High Rake Angles....................................189 4 j: a" B+ b4 p! C' y% b, N
3.6   Flank Angle ...........................................................................................191
" s. o3 x& I0 e1 ~! P) y* M4 r1 f3.7   Inclination Angle...................................................................................193 5 a, `6 A5 T& Q0 m- g) l" ]9 k4 [
      3.7.1   Turning with Rotary Tools.........................................................195 " N9 f/ T3 c; M. o5 E
3.7.2  Helical Treading Taps and Broaches..........................................197
4 E# D" z. t0 B; ?, e 3.7.3  Milling Tools..............................................................................198
: g6 i. C- Q' s6 [! SReferences......................................................................................................201
7 ~' D  S( z0 Z" i5 L4   Straight Flute and Twist Drills ...................................................................205 0 @& R& O" g" f) Z, \/ Y
4.1   Introduction ...........................................................................................205
1 O$ d8 F8 x& d/ l4.2   Classification.........................................................................................206 7 l+ w* }) o1 C$ F" Y( n
4.3   Basic Terms...........................................................................................208
3 r- B1 a5 D7 c2 K$ e+ V$ ?5 t4.4   System Approach ..................................................................................211 . b6 C5 c% A, n. g
4.4.1  System Objective .......................................................................212
( x- R# ~- n& X7 w% K. I9 T; g9 i 4.4.2  Understanding the Drilling System............................................212 - ^; D( D$ o3 P! Z8 z6 M. X% i
  4.4.3.  Understanding the Tool..............................................................212 ; S* d7 U1 C- l7 ]6 U, H
4.5.  Force System Constrains on the Drill Penetration Rate ........................213   ]! b& T/ _4 F( r7 T7 R0 v
  4.5.1   Force-balance Problem in Conventional Drills ..........................213 1 E- R* ]: v( Q1 l3 f# Q
  4.5.2   Constrains on the Drill Penetration Rate....................................218 / w3 q5 C7 D7 b) h2 ^; r
4.5.3  Drilling Torque ..........................................................................219
& z8 z+ c! r4 I( q& v) k- s 4.5.4  Axial Force.................................................................................220 + e4 j& w0 N5 K4 O! r4 i( O0 H5 L9 M2 f
  4.5.5   Axial Force (Thrust)-torque Coupling .......................................221 : @) }5 x/ Q' B3 @+ B) X0 W/ {
4.6   Drill Point ..............................................................................................223
2 m$ w6 [% A- T 4.6.1  Basic Classifications ..................................................................223
, d$ |# a3 Y6 V9 S$ w7 M  4.6.2   Tool Geometry Measures to Increase the Allowable    D; s: H0 @0 U% V# ?& e
Penetration Rate ....................................................................................224
, h4 X1 P% d5 k4 t( O4.7   Common Design and Manufacturing Flaws..........................................259
" A0 h  O9 l# j: q6 q8 J8 \6 t  4.7.1   Web Eccentricity/ Lip Index Error.............................................260 1 _# r1 {& S" ?
  4.7.2   Poor Surface Finish and Improper Tool Material/Hardness.......261
. t1 C- o1 M- P$ j' T1 D/ M, @  n 4.7.3  Coolant Hole Location and Size.................................................263
: x2 b* j: V- E/ l1 ~. h4.8   Tool Geometry ......................................................................................267
4 f/ z  m; B: H1 z$ h* [+ }- g8 M  4.8.1   Straight-flute and Twist Drills Particularities............................269
0 j4 K0 ?- z+ Y! `* j2 e# J  4.8.2   Geometry of the Typical Drill Point ..........................................270
  |5 a. m: ?+ K, n/ F7 g8 u  4.8.3   Rake Angle.................................................................................272
6 z4 ]0 k  g, I! g, _  4.8.4  Inclination Angle .........................................................................280 7 G) j+ s8 S' Y
4.8.5  Flank Angle................................................................................281
  f. s$ m7 w' G) U* V  4.8.6   Geometry of a Cutting Edge Located at an Angle  
9 @' m* \' A% U   to the y0-plane ............................................................................292
/ N; N9 G- _/ Z8 V) p: N" H 4.8.7  Chisel Edge ................................................................................295
4 j8 f* R' ^; j7 Y1 w  4.8.8   Drill Flank is Formed by Two Planes: Generalization...............306 & R+ G+ m. N3 Y. |( i/ I1 D6 R1 J
  4.8.9   Drill Flank Angle Formed by Three Planes ...............................310 & m5 x$ j' R2 c7 J( f  L% k
4.8.10  Flank Formed by Quadratic Surfaces.........................................313 1 c! d+ u2 Q, P$ G' u' Q$ V4 ~9 h
4.9   Load Over the Drill Cutting Edge .........................................................324
& R6 N6 h# U  [! C! m' H   4.9.1   Uncut Chip Thickness in Drilling ..............................................325 # n* S/ L6 s+ V" N' [) h
  4.9.2   Load Distribution Over the Cutting Edge ..................................327 1 s0 y+ h) q- X4 U( p& T# J
4.10  Drills with Curved and Segmented Cutting Edges ................................328
2 [# D: ~8 {4 z1 V* q  4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329 2 O- w( w0 H  C" g) G
  4.10.2 Rake Angle.................................................................................332
& m# K+ H  e: C7 c. w& X3 uReferences......................................................................................................337
3 }2 W5 [9 |* a5   Deep-hole Tools............................................................................................341
' c/ \) ~8 B9 a$ ^0 G5.1   Introduction ...........................................................................................341 & ]- }" I! {' M5 u2 V: ?' _* O* K
5.2   Generic Classification of Deep-hole Machining Operations.................343
7 S! I3 I- N2 z, j5.3   What Does ‘Self-piloting Tool’ Mean? .................................................345
9 O  s+ B5 l& n5 v  p  5.3.1   Force Balance in Self-piloting Tools..........................................345
+ X( e8 E. O  V5.4   Three Basic Kinematic Schemes of Drilling .........................................350 2 {! g, H' t2 G
  5.4.1   Gundrill Rotates and the Workpiece is Stationary .....................351
3 w1 S+ P  c* ]; d% j 5.4.2  Workpiece Rotates and the Gundrill is Stationary .....................352 9 d2 ~0 C7 X0 I: ?/ d/ U! K. r
5.4.3  Counterrotation ..........................................................................352
  l$ R6 k  \: R- u9 s; `1 G1 n5.5   System Approach ..................................................................................353
7 ~: J9 s# S; ^) E$ V  5.5.1   Handling Tool Failure ................................................................353
0 X  ^# r1 I( Q 5.5.2  System Considerations ...............................................................354 $ [5 f3 x2 q  ~7 ]' u; k
5.6   Gundrills................................................................................................362 : R$ G/ U$ \9 B( p7 P
5.6.1  Basic Geometry..........................................................................362 4 \' M3 \8 D3 H, A: o9 C
5.6.2  Rake Surface ..............................................................................365 % m: K* g8 t; u: U
  5.6.3   Geometry of Major Flanks .........................................................370 . W" `( R+ Y/ E8 ?) e. |: |
5.6.4  System Considerations in Gundrill Design ................................390
2 q7 F) X* B6 Z( o0 d5.6.5   Examplification of Significance of the High MWF Pressure 7 h. [5 I* G! j; h6 V
  in the Bottom Clearance Space ..................................................423 3 s8 i% _3 `, h' }: S, H
  5.6.6   Example of Experimental Study ................................................425
/ ^2 v8 l3 }7 s  5.6.7   Optimization of Tool Geometry.................................................439 0 U  ]. _7 a9 k; O' _! Y' e# G
References......................................................................................................440 ( y: e$ S( Z( V) r1 X
Appendix A  
, ]# E  {  o: T. ]! @* s, U+ BBasic Kinematics of Turning and Drilling.......................................................443
" @! D. A% g  ^6 J) r" y, s6 dA.1   Introduction ...........................................................................................443
$ f& P2 |7 Y8 F9 F' O8 M/ [A.2  Turning and Boring ...............................................................................444 % C0 Z4 i+ x# i/ K& C/ s
  A.2.1  Basic Motions in Turning...........................................................444
2 \: f8 N# d' J& M! o6 \+ m+ |% o) n  A.2.2  Cutting Speed in Turning and Boring ........................................448
% I  K) b' ^; E8 p' K9 n+ c! I+ |  A.2.3  Feed and Feed Rate ....................................................................448
4 h1 R: [8 h3 L+ _$ b1 \  A.2.4  Depth of Cut...............................................................................449 . A. A1 ?( j2 k; \/ u* U  c, f
A.2.5  Material Removal Rate ..............................................................449
! K+ T+ [% l2 q* n, p A.2.6  Resultant Motion........................................................................450 7 y. o( `, D% x) n7 ^
A.3  Drilling and Reaming ............................................................................450
& _- M- G+ U3 d$ u$ E% R+ y$ _ A.3.1  Basic Motions in Drilling...........................................................450
. O! E5 T: V% [6 ~! L A.3.2  Machining Regime.....................................................................451
( A" Q% s& x: S* O5 u, ]1 p) VA.4  Cutting Force and Power .......................................................................453
( N2 I2 ^  l- W3 b' j  A.4.1  Force System in Metal Cutting...................................................453
4 b- x$ S8 Y! w* t" C  A.4.2  Cutting Power ............................................................................454
2 F% g  b7 r3 }1 |8 Y6 R A.4.3  Practical Assessment of the Cutting Force.................................455
% U! b! h, F1 c" n, i8 l$ K1 gReferences......................................................................................................461   r* R4 f1 b3 b1 A  X# g, f, k
Appendix B  
/ V" P' K# V& T/ ~1 xANSI and ISO Turning Indexable Inserts and Holders.................................463 1 ^. {7 O' A, ^8 c# G: ]' l
B.1   Indexable Inserts ...................................................................................463
! U- ^  U) c, R, ~# s  B.1.1  ANSI Code .................................................................................464
# z; f8 w* `* a4 F B.1.2  ISO Code....................................................................................471
* H( O, P1 p/ g  B.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491 3 q  A" _6 A2 P5 b  i
  B.2.1   Symbol for the Method of Holding Horizontally Mounted  3 w# L- F5 T5 m/ j
Insert – Reference Position (1) ..............................................................492 5 s+ l& w3 r( d8 S
  B.2.2   Symbol for Insert Shape – Reference Position (2) .....................493 / |* z* o7 z# ]9 X4 o: J
  B.2.3   Symbol for Tool Style – Reference Position (3) ........................493
# B5 H" K9 s4 I: j  ?7 G  B.2.4   Letter Symbol Identifying Insert Normal Clearance –  ) P' c5 a# M, ?" b4 p8 c
   Reference Position (4)................................................................494
( q8 ?6 c5 Y* X# d- P9 ?+ l. o  B.2.5   Symbol for Tool Hand – Reference position (5) ........................494
% j  g) G- F2 L  B.2.6  Symbol for Tool Height (Shank Height of Tool Holders  4 @7 P0 R) o$ T6 x- E" ^
    and Height of Cutting Edge) - Reference Position (6) ...............494 0 Y( ~/ d" \, B2 j" I1 B
  B.2.7  Number Symbol Identifying Tool Holder Shank Width –  " x& u/ q# J: o2 |0 k4 }. i! F+ S1 P
   Reference Position (7)................................................................495 - I7 Q) U5 `" e% u
  B.2.8  Number Symbol Identifying Tool Length –  
) [6 F) d9 ^# D% C% f! Q   Reference Position (8)................................................................495 . Z) G6 ~/ H' k0 e* u
  B.2.9   Letter Symbol Identifying Indexable Insert Size –  ) ]+ D$ Y9 u$ s  p7 o' ?$ @
   Reference Position (9)................................................................497
, O" e3 C6 O% ]& A. @Appendix C  
* @3 y8 d' T/ b4 tBasics of Vector Analysis ..................................................................................499 & ?* L: ^. z9 |; K  c
C.1   Vectors and Scalars ...............................................................................499 . S1 u0 G" o$ F  T/ V+ n
C.2   Definition and Representation...............................................................500 ! z4 c+ ~' H3 e/ a5 }  U
C.2.1  Definitions..................................................................................500
6 t- q9 K& s) ]3 K0 f C.2.2  Basic Vector Operations ............................................................503 ' x* z$ U; @+ ^% q" b
C.3   Application Conveniences.....................................................................509 2 A* L  T' q! c+ h7 I$ ]
C.4  Rotation: Linear and Angular Velocities...............................................511 2 \) }3 P% r  L
  C.4.1   Planar Linear and Angular Velocities ........................................511 ( ?* d. s. w2 u$ }$ v. ^9 _" M% B
  C.4.2   Rotation: The Angular Velocity Vector .....................................515
3 {# a( o) X  i' r! L& bReferences ...........................................................................................................518 2 n  V2 o7 Q# H; g# N# J
Appendix D  
5 a' Y6 X& [% J. F' ^% }Hydraulic Losses: Basics and Gundrill Specifics............................................519 - \5 y( Q5 q3 n& D: S! l
D.1  Hydraulic Pressure Losses – General ....................................................519 . x% t+ i' J7 E, Y# Y- R9 g: V3 S
D.1.1  Major Losses: Friction Factor ....................................................520 ) A; o* b1 L2 `+ R& ]" ^
  D.1.2  Minor Losses (Losses Due to Form Resistance) ........................521 8 I' T& m3 \9 I$ S1 ~4 B
D.2  Concept of the Critical MWF Velocity and Flow Rate .........................521
8 n. }$ [) Y4 {5 j& m* I  D.2.1  MWF Flow Rate Needed for Reliable Chip Transportation.......522
) X2 G+ i2 {& }2 o% v( U' I  D.2.3  Example D.1...............................................................................527
! k6 f; m/ f, ED.3   Inlet MWF pressure...............................................................................528 " _+ p( @, [1 }5 n, Y' b  f; D
D.4  Analysis of Hydraulic Resistances ........................................................532 5 J' m# C  S' K1 ?6 S  v/ {
  D.4.1  Analysis of Hydraulic Resistances Over Which the Designer  
! b& O/ o" e( M1 S6 k5 s    Has No or Little Control ............................................................532 ( R3 X) e$ m* Q+ ^; w/ \
  D.4.2  Variable Resistances Over Which the Designer Has Control ....535
& L8 U( m4 K4 w+ \D.5   Practical Implementation in the Drill Design ........................................539 6 h! w( M" @' Q, |+ e& C
References ..........................................................................................................543   A/ K) O- @( Z. C3 {
Appendix E
0 z8 w+ |: K$ D7 y! V5 e8 K( tRequirements and Examples of Cutting Tool Drawings................................545 7 N# `0 t. {! S
E.1   Introduction ...........................................................................................545 4 o# H' h- {5 v) D
E.2   Tool Drawings – the Existent Practice ..................................................546   i  [# L# L4 p/ L' D
E.3   Tool Drawing Requrements ..................................................................548
9 P! r/ c  p# R1 Z- @# {  cE.4   Examples of Tool Drawing ...................................................................553 9 G/ B& \0 x2 l0 C
References ..........................................................................................................559
2 C  L" y) k5 hIndex…………………………………………………………………………….561 ' I; Z/ f5 u0 t1 R
) D1 x: _% A: @2 x- y

4 I, v$ d' W$ F/ U% X
回复 支持 反对

使用道具 举报

5#
发表于 2011-6-25 13:07:50 | 只看该作者
都是些神马?
回复 支持 反对

使用道具 举报

6#
发表于 2011-6-25 13:33:41 | 只看该作者
埋头挖矿中。。。。。。。。。
回复 支持 反对

使用道具 举报

7#
发表于 2011-6-26 15:14:56 | 只看该作者
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
回复 支持 反对

使用道具 举报

8#
 楼主| 发表于 2011-6-26 18:10:54 | 只看该作者
专业人士自有看法。
回复 支持 反对

使用道具 举报

9#
发表于 2011-6-27 18:42:38 | 只看该作者
好东西啊,英文的,看着太费劲了
回复 支持 反对

使用道具 举报

10#
发表于 2011-6-27 21:53:22 | 只看该作者
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本
. {2 d0 }5 T" ]请问这套丛书共包含哪几本书
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-1-11 17:45 , Processed in 0.070589 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表