机械必威体育网址

找回密码
注册会员

QQ登录

只需一步,快速开始

搜索
查看: 7748 | 回复: 19
打印 上一主题 下一主题

Geometry_of_Single_point_Turning_Tools_and_Drills

[复制链接]
跳转到指定楼层
1#
发表于 2011-6-23 22:58:22 | 只看该作者 回帖奖励 | 倒序浏览 | 阅读模式
本帖最后由 机器鼠 于 2011-6-23 23:18 编辑
; \. T$ ^6 @5 n/ E0 k# x
3 F, v8 Y9 k/ r3 { c/ |Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Applications.pdf# e- C. q( O! M. P5 V
有要的吗?刀具,细节,很到位。英文版。& b& p3 S& _; @4 O, e
国内无人这么细研究的吧?

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 阅读权限:90, 下载次数: 8, 下载积分: 威望 -10 点

7

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 7, 下载积分: 威望 -10 点

6

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 8, 下载积分: 威望 -10 点

5

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

4

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

3

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

4.35 MB, 下载次数: 6, 下载积分: 威望 -10 点

2

Geometry_of_Single_point_Turning_Tools_and_Drills__Fundamentals_and_Practical_Ap.rar

140.75 KB, 阅读权限:90, 下载次数: 7, 下载积分: 威望 -10 点

1

2#
发表于 2011-6-24 19:17:16 | 只看该作者
说什么的?
3#
楼主 | 发表于 2011-6-24 22:02:25 | 只看该作者
Although almost any book and/or text on metal cutting, cutting tool design, and# j9 {+ D0 c( Q: i+ w5 g: S
manufacturing process discusses to a certain extent the tool geometry, the body of
+ e. H. V% {' R, X* tknowledge on the subject is scattered and confusing. Moreover, there is no clear. K- ?- l$ m4 q9 M* o% r
objective(s) set in the selection of the tool geometry parameters so that an answer6 p4 b+ C6 f, W2 |, z% i( ]0 k
to a simple question about optimal tool geometry cannot be found in the literature
g' H M" S1 V# I- o' r' S0 don the subject. This is because a criterion (criteria) of optimization is not clear, on1 j- l2 Z" \; ?
one hand, and because the role of cutting tool geometry in machining process
; H. r6 e" ]( g7 ~optimization has never been studied systematically, on the other. As a result, many
0 O% L4 W6 {3 hpractical tool/process designers are forced to use extremely vague ranges of tool
0 t' U/ d9 f: x, m$ s) Q+ y% d7 [geometry parameters provided by handbooks. Being at least 20+ years outdated,
' a; A. P6 ?' p4 a: |- hthese data do not account for any particularities of a machining operation including
" E0 U8 q S3 _ b/ _+ \( p: a! _: \a particular grade of tool material, the condition of the machine used, the cutting
% }+ ^7 B5 s0 R/ b: ^# yfluid, properties and metallurgical condition of the work material, requirements to* [, _$ t0 ]+ M& D. K M/ X \
the integrity of the machined surface, etc.
1 j5 h; a, P9 e2 y' EUnfortunately, while today's professionals, practitioners, and students are
. u9 l7 v1 X5 W" a1 H$ l) linterested in cutting tool geometry, they are doomed to struggle with the confusing) J- ~. {2 n. D( E* k9 O7 ?
terminology. When one does not know what the words (terms) mean, it is easy to" U. v7 ~; ]$ Q+ X$ o
slip into thinking that the matter is difficult, when actually the ideas are simple,' M- O2 n& H: D3 G5 m/ v5 K
easy to grasp, and fun to consider. It is the terms that get in the way, that stand as a
$ L! R3 t' f0 {/ p4 T- ywall between many practitioners and science. This books attempts to turn those* m5 e! r% V) H. _ F
walls into windows, so that readers can peer in and join in the fun of proper tool
/ |4 A% r: g @% j: zdesign.3 g. {% g( `6 w. ^
So, why am I writing this book? There are a few reasons, but first and foremost,
4 c6 F4 [1 r) D& S4 ~# r$ N1 @because I am a true believer in what we call technical literacy. I believe that
Q& i6 R2 ~- |) F2 T5 Xeveryone involved in the metal cutting business should understand the essence and! S. V8 \% j" X" J0 R% {7 F
importance of cutting tool geometry. In my opinion, this understanding is key to" A2 G( o' p5 B$ l. ~- u" s
improving efficiency of practically all machining operations. For the first time, this6 i5 f) Y( u# E: c
book presents and explains the direct correlations between tool geometry and tool
' ~) F! o) p5 q' G2 Fperformance. The second reason is that I felt that there is no comprehensive book4 I, u) @- `* V7 @: t7 v+ V
on the subject so professionals, practitioners, and students do not have a text from
6 _6 _& o# H2 Y- b X* x4 O1 Lwhich to learn more on the subject and thus appreciate the real value of tool" {( u$ {/ x, B5 R5 f# g
geometry. Finally, I wanted to share the key elements of tool geometry that I felt
2 T% B$ ^: q3 Q( a" Lwere not broadly understood and thus used in the tool design practice and in/ ~% O, G/ F9 L9 ]% @% S f
optimization of machining operations in industry. Moreover, being directly
2 o1 D* C* ] I: H4 E8 Iinvolved in the launch of many modern manufacturing facilities equipped with
! h; H' f- g7 m0 t% a# K! M1 Hstate-of-the-art high-precision machines, I found that the cutting tool industry is not2 I$ t- R. V# h: Z" `" y
ready to meet the challenge of modern metal cutting applications. One of the key5 _: J+ r# o s9 v7 c! Y+ g, i1 F
issues is the definite lack of understanding of the basics of tool geometry of* k& B" G; x i& y$ ^) N$ J' o
standard and application-specific tools.' c2 e; o' ?1 b$ c- l
The lack of information on cutting tool geometry and its influence on the0 p$ y. B' P+ `; v
outcome of machining operations can be explained as follows. Many great findings. @8 [! x$ N6 G5 I+ t
on tool geometry were published a long time ago when neither CNC grinding2 F2 N; g- W: L6 L# V" G
machines capable of reproducing any kind of tool geometry were available nor7 @0 l7 b+ [6 W) X
were computers to calculate parameters of such geometry (using numerical* A. c8 _$ e) \: |
methods) common. Manual grinding using standard 2- and 3-axis simple grinding' d7 Q6 O1 [4 x% U2 A
features was common so the major requirement for tool geometry was the simpler
8 o+ n% u, m5 [+ V% Jthe better. Moreover, old, insufficiently rigid machines, aged tool holders and part
3 m1 J) Q* {) A: M1 Y' Nfixtures, and poor metal working fluid (MWF) selection and maintenance levered
4 V2 q4 F6 ?* D' u sany advancement in tool geometry as its influence could not be distinguished under
5 x2 b( s$ s: a" b" [these conditions. Besides, a great scatter in the properties of tool materials in the
6 Y( c' A; y0 T/ T, Q/ d5 r7 U5 ^past did not allow distinguishing of the true influence of tool geometry. As a result,) W8 @+ ]8 p1 g$ a1 c
studies on tool geometry were reduced to theoretical considerations of features of
9 A0 ? F" u: K. ]1 n' H Ptwist drills and some gear manufacturing tools such as hobs, shaving cutters,
2 G r+ S/ }, N, o+ Sshapers, etc.5 J& Y& g8 R5 B
Gradually, once mighty chapters on tool geometry in metal cutting and tool/ I$ |: W) i! T) [3 g
design books were reduced to sections of few pages where no correlation between
2 X4 P3 A; c) l8 u7 x9 F: Btool geometry and tool performance is normally considered. What is left is a7 F& C% p6 j% g6 H2 G0 R
general perception that the so-called “positive geometry” is somehow better than4 I' H+ {8 ~. Q
“negative geometry.” As such, there is no quantitative translation of the word6 N- ?' t* z( v8 c
“better” into the language of technical data although a great number of articles
0 {* X9 J4 e6 _0 Jwritten in many professional magazines discuss the qualitative advantages of# e: Y4 G# w7 g
“positive geometry.” For example, one popular manufacturing magazine article- P, e9 R2 h, w
read “Negative rake tools have a much stronger leading edge and tend to push! f; L' K$ o4 H8 G+ o% R
against the workpiece in the direction of the cutter feed. This geometry is less free
) d2 Y# }: T9 [8 }. ccutting than positive rakes and so consumes more horsepower to cut.” Reading
9 R7 y! T4 C% T' C: kthese articles one may wonder why cutting tool manufacturers did not switch their
0 r, e9 l/ Z6 ?4 utool designs completely to this mysterious “positive geometry” or why some of
( l. z) n1 |- G1 ~( ~* I- r0 rthem still investigate and promote negative geometry.( r# y, v( T! W2 E: p1 S+ [
During recent decades, the metalworking industry underwent several important, D! o1 j2 f( W+ z
changes that should bring cutting tool geometry into the forefront of tool design
0 |& \8 ~% p4 p# Q6 I xand implementation:
4#
楼主 | 发表于 2011-6-24 22:03:42 | 只看该作者
1 What Does It Mean “Metal Cutting”? ...........................................................1
5 o" A/ a% a/ {2 m$ Z6 V9 g1.1 Introduction ...............................................................................................10 H! y2 r+ ]- n. X, [) p+ Y
1.2 Known Results and Comparison with Other Forming Processes ..............23 }: _* u E+ ]
1.2.1 Single-shear Plane Model of Metal Cutting ...................................2
% s' Y4 g+ v+ m/ {1 G/ c/ k9 |7 l1.2.2 Metal Cutting vs. Other Closely Related Manufacturing
9 T$ \& S5 E4 ROperations .................................................................................................5% N1 V( g, @$ Z: H
1.3 What Went Wrong in the Representation of Metal Cutting?...................22
" v( v* {! ?/ m$ B. H/ d. v1.3.1 Force Diagram..............................................................................23
: H; ?& a3 t: E- n9 j3 F- K! v1.3.2 Resistance of the Work Material in Cutting.................................25
" m, U% B. _9 P$ ?1.3.3 Comparison of the Known Solutions for the Single-shear0 j! r6 Q! w( d- R& }
Plane Model with Experimental Results .................................................27+ e) ~: K6 B0 K
1.4 What is Metal Cutting?............................................................................28
2 f( m. H5 s; W) p1 t9 i. r1.4.1 Importance to Know the Right Answer........................................28
( ?9 U( u, p, m( g, \1.4.2 Definition .....................................................................................28
' Q6 B! ?& Y8 [6 L7 s5 G i1.4.3 Relevance to the Cutting Tool Geometry.....................................29
3 M$ v4 x, u4 e9 Z; H1.5 Fundamental Laws of Metal Cutting.......................................................321 C h1 r7 x" |8 t( Q1 M
1.5.1 Optimal Cutting Temperature – Makarow’s Law........................32
# o: O: G Q0 o8 o$ y& Q4 |( r1.5.2 Deformation Law.........................................................................35
4 e3 }" w4 d" yReferences........................................................................................................50! V- @" w7 q. B, o, O5 ^6 c4 M
2 Basic Definitions and Cutting Tool Geometry,
+ T; t f" n% v9 Z( SSingle Point Cutting Tools ............................................................................55# L8 ]$ x7 ^7 x7 c; O: g" x6 w
2.1 Basic Terms and Definitions ...................................................................554 V9 z/ h' R" J( S# g
2.1.1 Workpiece Surfaces.......................................................................57$ D6 q( [3 _: w8 E1 y. d: k
2.1.2 Tool Surfaces and Elements ..........................................................573 W, l! \( M8 F+ ~, t1 N
2.1.3 Tool and Workpiece Motions.......................................................57- b6 s. K9 S2 d5 {3 M
2.1.4 Types of Cutting ............................................................................58
9 P! s) P W' M0 Y9 d; J( p7 |2.2 Cutting Tool Geometry Standards...........................................................60$ H) ~- C: U. h. v; }
2.3 Systems of Consideration of Tool Geometry ..........................................61% a; L$ `4 G: C9 q6 w4 J, N1 G
2.4. Tool-in-hand System (T-hand-S) .......................................................645 U/ T. ^" E$ S1 t: y5 q
2.4.1 Tool-in-hand Coordinate System.................................................64
1 D8 `7 i0 U% r1 U3 H2.4.2 References Planes ........................................................................66
) l$ `0 ~( m. a" K2 \& a2.4.3 Tool Angles..................................................................................68& H- x8 x. ], E4 J8 d
2.4.4 Geometry of Cutting Tools with Indexable Inserts ......................74
! z/ x" b# g& A( U& F2.5 Tool-in-machine System (T-mach-S)......................................................84- j8 S, Q) W F2 l
2.5.1 Angles ..........................................................................................84- C/ i6 y% | P# M/ q
2.5.2 Example 2.3 .................................................................................88; W" R+ q5 R8 n" ?9 a: x9 a5 ?
2.6 Tool-in-use System (T-use-S) .................................................................90
4 D0 M5 b4 j$ z$ i: a y! @2.6.1 Reference Planes ..........................................................................91
: i o' f5 F U# b1 I2.6.2 The Concept .................................................................................923 \" s* y' q% n( t( _! A3 Y
2.6.3 Modification of the T-hand-S Cool Geometry .............................92; L2 F( x- k( y! ?1 |" N! W; }
2.6.4 Kinematic Angles.........................................................................98
2 `$ P) d- |* ]! Z2.6.5 Example 2.4 ...............................................................................100
2 c) N4 O( s% v% {9 n1 a: S2.7 Avalanched Representation of the Cutting Tool Geometry
w- N \0 |# Win T-hand-S............................................................................................1026 D- X: D/ O" u0 v
2.7.1 Basic Tool Geometry .................................................................102
$ X; D8 e9 A6 o2 d2.7.2 Determination of Cutting Tool Angles Relation
4 r+ \, L3 `! C' Hfor a Wiper Cutting Insert ..........................................................108
! \: D. O2 J3 v7 N8 E9 Q& }$ p) g2.7.3 Determination of Cutting Tool Angles- d, ]2 {( e) [, i
for a Single-point Tool ...............................................................110
6 |7 Z6 o5 s1 ?2.7.4 Flank Angles of a Dovetail Forming Tool .................................117
, Y- D9 K6 @. ^8 f8 z2 q2.7.5 Summation of Several Motions..................................................119- z1 L2 V% ?3 T9 ^
References......................................................................................................125$ Y. }# p3 z, B$ A
3 Fundamentals of the Selection of Cutting Tool Geometry Parameters...127/ l7 s& }! O) Z$ o* w* C3 p8 t
3.1 Introduction ...........................................................................................127" ]; N o8 e% @0 x4 u
3.2 General Considerations in the Selection of Parameters% k* y& a% R5 l8 b
of Cutting Tool Geometry .....................................................................129
2 M5 H K7 p4 W1 s( d/ U1 K/ }3.2.1 Known Results .............................................................................1299 s3 w# D/ y" t( E2 m" h% Q7 l
3.2.2 Ideal Tool Geometry and Constrains............................................130
x1 |- r r4 B( w7 R2 _/ f3.2.3 Practical Gage for Experimental Evaluation of Tool Geometry...1323 V; o8 @5 e" k: T0 G
3.3 Tool Cutting Edge Angles .....................................................................132
: d7 X/ o' d7 ^3.3.1 General Consideration................................................................132
, k: l0 |( x# b3.3.2 Uncut ChipT in Non-free Cutting ..............................................134- W8 l0 R+ o! R0 N, K9 {
3.3.3 Influence on the Surface Finish..................................................1424 m f' O$ D7 n1 v" e- P m. m
3.3.4 Tools with κr > 90°.....................................................................144
( K9 o9 u" l# V3.3.5 Tool Minor Cutting Edge Angle ................................................147
9 ^5 S' P* |7 ]3.4. Edge Preparation ...................................................................................161
( L" I( g& t/ M- b3.4.1 General .......................................................................................161
! @4 G' ?- q7 D# g# R! l6 P3.4.2 Shape and Extent........................................................................163
+ r2 | x g+ J0 r$ U) B$ P F; N3.4.3 Limitations .................................................................................163) t0 X. R9 ?/ M l* @
3.4.4 What Edge Preparation Actually Does.......................................169! m6 U' V7 l8 w
3.5 Rake Angle............................................................................................171
& u& e6 o( E1 P4 _+ q6 {& x$ w3.5.1 Introduction................................................................................171
$ q& ^+ m7 J3 M$ k: r9 a: A: _3 \, p: x3.5.2 Influence on Plastic Deformation and Generazliations ..............175
. ?% v3 ^% O" e3.5.3 Effective Rake Angle .................................................................183/ W- z P3 o& y: ]9 k9 x8 X
3.5.4 Conditions for Using High Rake Angles....................................189
0 o! C# N& L' V$ V& \9 j3.6 Flank Angle ...........................................................................................1918 q( c, D3 p2 j# P0 O
3.7 Inclination Angle...................................................................................193$ }5 e8 m6 @. m( U
3.7.1 Turning with Rotary Tools.........................................................195
* t0 N7 T2 n9 h5 Q3.7.2 Helical Treading Taps and Broaches..........................................197
1 S& j2 Y& h- C7 d% S8 v' i1 _# _* s3.7.3 Milling Tools..............................................................................198
' F1 p( k' ]6 Q* nReferences......................................................................................................201
( k* y" [+ _2 x- c8 w' k; O4 Straight Flute and Twist Drills ...................................................................205- H) B: r# H0 T( s& J
4.1 Introduction ...........................................................................................205
2 f+ p$ }9 W5 m; G: k4.2 Classification.........................................................................................206/ H' A/ X# z# c4 N) N- ?, V4 D
4.3 Basic Terms...........................................................................................208
. Q0 E+ ?# K4 A# m3 @$ w4.4 System Approach ..................................................................................211
; @! N1 w k: j1 ^/ d0 U0 d5 `4.4.1 System Objective .......................................................................212
! I0 O7 f% A' R% R: {' X, c ]4.4.2 Understanding the Drilling System............................................212: B+ U" F# L* [3 d! C! x: B
4.4.3. Understanding the Tool..............................................................2127 w+ J7 O- z# l3 \5 |0 _
4.5. Force System Constrains on the Drill Penetration Rate ........................213
" C q' A7 f7 }/ H- y4.5.1 Force-balance Problem in Conventional Drills ..........................213
8 _1 t$ a* e' a4.5.2 Constrains on the Drill Penetration Rate....................................218
3 X+ f, M2 K# m% S6 s" B( O4.5.3 Drilling Torque ..........................................................................219
9 X) T( e0 _ `! @( ]; g! s$ k& j4.5.4 Axial Force.................................................................................220|. @7 h8 U% [
4.5.5 Axial Force (Thrust)-torque Coupling .......................................221! O5 v+ _! \0 H R; B
4.6 Drill Point ..............................................................................................223. N) o4 S3 f2 A
4.6.1 Basic Classifications ..................................................................223
$ k* m" Q( ~; e4 N8 I) H) x4.6.2 Tool Geometry Measures to Increase the Allowable) v; C6 K8 J) ^$ y. x
Penetration Rate ....................................................................................224; J' l1 G+ S0 z1 u# I; C
4.7 Common Design and Manufacturing Flaws..........................................2591 o4 K9 o1 N) Z) l! d' d# ?
4.7.1 Web Eccentricity/ Lip Index Error.............................................260
& a) W8 P. X9 R4.7.2 Poor Surface Finish and Improper Tool Material/Hardness.......2612 N8 I, I" ~2 X& _5 B ~0 ?9 @
4.7.3 Coolant Hole Location and Size.................................................263
2 A* A1 K5 ]* y' S5 L4.8 Tool Geometry ......................................................................................267$ }. N( {' G: z4 e Y% f* y: W
4.8.1 Straight-flute and Twist Drills Particularities............................2691 @4 N6 y0 p0 v5 m4 U
4.8.2 Geometry of the Typical Drill Point ..........................................270
: c: P8 w; s4 V& g2 z% i4.8.3 Rake Angle.................................................................................2723 y3 ~: h3 [8 Q
4.8.4 Inclination Angle .........................................................................280& k& v/ E$ H3 \, [* X8 r
4.8.5 Flank Angle................................................................................281: z6 v3 J9 }! J9 A8 m* F
4.8.6 Geometry of a Cutting Edge Located at an Angle
( A+ ^) K3 X& ^& kto the y0-plane ............................................................................2927 y( E9 Z4 G& w8 {( C
4.8.7 Chisel Edge ................................................................................2958 Z5 K) X* S5 X; Q
4.8.8 Drill Flank is Formed by Two Planes: Generalization...............306
) I: [: U% f N( M" D5 Y4.8.9 Drill Flank Angle Formed by Three Planes ...............................310
: X+ f& L0 O) z2 q! |! `: x& N4.8.10 Flank Formed by Quadratic Surfaces.........................................313
/ C4 Z+ c. Y" P" @: A9 h4.9 Load Over the Drill Cutting Edge .........................................................324$ @9 Q. G9 i) \* y# H2 S
4.9.1 Uncut Chip Thickness in Drilling ..............................................325
8 @! N, @1 E& t( V0 Y. v4.9.2 Load Distribution Over the Cutting Edge ..................................327) \0 S6 w' g1 k! g7 H
4.10 Drills with Curved and Segmented Cutting Edges ................................328* p5 b, O) z1 E! [# Q9 m
4.10.1 Load of the Cutting Part of a Drill with Curved Cutting Edges .329
6 ~. E/ p% K. J6 ^4.10.2 Rake Angle.................................................................................332
: u* x9 w3 P+ ]2 aReferences......................................................................................................337
" Z9 k- [7 K! p+ |5 Deep-hole Tools............................................................................................3411 o9 h6 u& B6 x ^3 u
5.1 Introduction ...........................................................................................341; G" y9 v0 r3 n' F, Q
5.2 Generic Classification of Deep-hole Machining Operations.................3438 n1 S% a. W0 G+ ?# q( S4 ^: N+ D0 @
5.3 What Does ‘Self-piloting Tool’ Mean? .................................................345' q+ O+ S/ c: p) `8 k
5.3.1 Force Balance in Self-piloting Tools..........................................345
+ c. K" k4 h( C5.4 Three Basic Kinematic Schemes of Drilling .........................................3506 b* ^& h$ y9 n; _
5.4.1 Gundrill Rotates and the Workpiece is Stationary .....................351$ v: k# ?4 a; K& c! X" I4 O: O
5.4.2 Workpiece Rotates and the Gundrill is Stationary .....................352
k! u0 N6 x/ r n e5.4.3 Counterrotation ..........................................................................352
2 }# |) S' N, T U) {5.5 System Approach ..................................................................................353
9 e' s+ `7 v' w$ |" M8 P1 w2 }8 G5.5.1 Handling Tool Failure ................................................................353
7 f: L6 _2 f2 ^; ]+ s Y# d5.5.2 System Considerations ...............................................................354
2 E6 ]& w4 a+ u" [7 k, m5.6 Gundrills................................................................................................362( Y2 u, O4 a6 ^5 \6 L$ i& P# N
5.6.1 Basic Geometry..........................................................................362, u# I% {1 [- V1 c# _9 [
5.6.2 Rake Surface ..............................................................................3657 Q/ _) J- ]2 A# D, M
5.6.3 Geometry of Major Flanks .........................................................370
) O, q2 z$ p* b: b% e* l5.6.4 System Considerations in Gundrill Design ................................390
; i% _9 q, @: D4 `: u3 K5.6.5 Examplification of Significance of the High MWF Pressure
! N, M P- F6 @4 Min the Bottom Clearance Space ..................................................423' s8 L& L' f4 ~3 h4 n, v3 l7 {$ O
5.6.6 Example of Experimental Study ................................................425( W' V6 L9 K- B# S8 Q) V1 X0 h
5.6.7 Optimization of Tool Geometry.................................................439
9 {) }4 H6 A& r0 I6 rReferences......................................................................................................440" ~+ m7 E7 W0 r* C# a5 h1 z
Appendix A/ s8 n# t$ Z' C1 {1 G6 ]
Basic Kinematics of Turning and Drilling.......................................................4436 J+ r# _, y$ R# N
A.1 Introduction ...........................................................................................4436 R+ m4 \1 D, Q% m
A.2 Turning and Boring ...............................................................................444
+ g; J( U+ @" Z- JA.2.1 Basic Motions in Turning...........................................................444
4 J9 P2 P9 F k6 j9 o" Z, CA.2.2 Cutting Speed in Turning and Boring ........................................448
8 X( _5 E, [+ fA.2.3 Feed and Feed Rate ....................................................................448
/ f6 `& |7 B8 L& W/ LA.2.4 Depth of Cut...............................................................................449
9 t5 A" G6 c' yA.2.5 Material Removal Rate ..............................................................449
$ h I3 \: j& O: y: FA.2.6 Resultant Motion........................................................................450! }# m# `. v C
A.3 Drilling and Reaming ............................................................................4500 a2 g& k' F, p# g, ?
A.3.1 Basic Motions in Drilling...........................................................450
4 n$ t$ r/ s/ A WA.3.2 Machining Regime.....................................................................451! |" n; B, [$ V2 d& R
A.4 Cutting Force and Power .......................................................................4531 r# l- j0 z& Z" w6 ^( T
A.4.1 Force System in Metal Cutting...................................................453; A4 k8 }$ O# ~
A.4.2 Cutting Power ............................................................................454
+ R: s' V, c6 i8 f1 ~A.4.3 Practical Assessment of the Cutting Force.................................455
) K8 T+ ?6 [9 ?0 tReferences......................................................................................................461
7 k& O3 ~% P7 ^8 }: b& Z/ t: nAppendix B
2 S; ]1 T9 _0 U' w& K6 `$ L5 r& wANSI and ISO Turning Indexable Inserts and Holders.................................463
$ r; `, H+ J- m }8 G- `B.1 Indexable Inserts ...................................................................................463
/ M4 U: c/ \- c# w( tB.1.1 ANSI Code .................................................................................464
0 P- j! R9 k2 n" ~/ V& oB.1.2 ISO Code....................................................................................471
1 E8 c' J# c4 eB.2 Tool Holders for Indexable Inserts (Single Point Tools) ......................491
* `3 D+ V; m4 N1 o' G7 iB.2.1 Symbol for the Method of Holding Horizontally Mounted( _9 |+ b& B% g E6 {
Insert – Reference Position (1) ..............................................................492
2 f0 {/ l( O+ E$ j) ^1 C6 s1 [9 IB.2.2 Symbol for Insert Shape – Reference Position (2) .....................493
3 r2 \ u% \, ? w2 u9 G; Q% cB.2.3 Symbol for Tool Style – Reference Position (3) ........................493
5 Q& b! s" S/ d# t0 s& h! uB.2.4 Letter Symbol Identifying Insert Normal Clearance –
0 h7 E3 w" F+ y5 W" C. A' [Reference Position (4)................................................................494$ L# h6 w9 I! R6 y7 N: n
B.2.5 Symbol for Tool Hand – Reference position (5) ........................4948 K0 U$ {; b5 Y+ h& I5 d2 y
B.2.6 Symbol for Tool Height (Shank Height of Tool Holdersr' r* }! h$ W7 H
and Height of Cutting Edge) - Reference Position (6) ...............494# k [0 H6 E# H, y# u2 F
B.2.7 Number Symbol Identifying Tool Holder Shank Width –
0 l6 f* i9 u1 [% k! I" F; R( _! Y% x" S( }Reference Position (7)................................................................495* s7 s' q# f4 q$ y L. g
B.2.8 Number Symbol Identifying Tool Length –( J5 G- m4 W2 X3 i: e( m
Reference Position (8)................................................................4954 j+ ]" L( [9 z/ b9 e
B.2.9 Letter Symbol Identifying Indexable Insert Size –
6 V( i: b' O9 p6 YReference Position (9)................................................................497; E; i3 w) p' e4 C
Appendix C* t% b8 D% S0 [& J' w Y% m' \, I6 h
Basics of Vector Analysis ..................................................................................499
# d6 Y- ]; N. y. K( `9 IC.1 Vectors and Scalars ...............................................................................499
. R, C1 }3 q) A9 X# EC.2 Definition and Representation...............................................................500# C% I! B0 [" y5 w( |# r4 a# r
C.2.1 Definitions..................................................................................500
5 I6 |- j5 m8 Q! q0 ^C.2.2 Basic Vector Operations ............................................................503, g3 X* p9 T% C+ r4 {0 `
C.3 Application Conveniences.....................................................................509
f6 G" l6 s# w4 e0 j4 z IC.4 Rotation: Linear and Angular Velocities...............................................511' [2 u$ R; b1 H
C.4.1 Planar Linear and Angular Velocities ........................................511' x5 n( C8 U1 U- ~
C.4.2 Rotation: The Angular Velocity Vector .....................................5151 `/ U8 T( ]4 G; D# o8 `" t
References ...........................................................................................................518/ l( h+ o* U" G- z+ K2 z
Appendix D. V! w* o' f* T
Hydraulic Losses: Basics and Gundrill Specifics............................................519
3 ]& m7 F& }& k) lD.1 Hydraulic Pressure Losses – General ....................................................519
& [! y8 K! C/ X, Y' DD.1.1 Major Losses: Friction Factor ....................................................520
8 v, y4 `9 {& ~1 ]- PD.1.2 Minor Losses (Losses Due to Form Resistance) ........................521
+ t" g' _9 m7 u# ]" H) D- qD.2 Concept of the Critical MWF Velocity and Flow Rate .........................521
* Z, E8 w. ]+ f7 aD.2.1 MWF Flow Rate Needed for Reliable Chip Transportation.......522. z. s! U/ C" }- B
D.2.3 Example D.1...............................................................................527) M# ^- {& c5 T1 o3 D6 j# H
D.3 Inlet MWF pressure...............................................................................528: j0 _2 Y4 E3 k+ ^+ x1 o* D
D.4 Analysis of Hydraulic Resistances ........................................................532
( ^- A6 r- J: s6 L+ nD.4.1 Analysis of Hydraulic Resistances Over Which the Designer
l2 B0 C& P3 Z& c" f7 O8 f. |6 dHas No or Little Control ............................................................532
8 [ J4 C1 O: Z5 @: N0 [/ s! e3 XD.4.2 Variable Resistances Over Which the Designer Has Control ....535
/ q) u- d! V1 e# h# Y# UD.5 Practical Implementation in the Drill Design ........................................539$ y" G0 ^' a# t1 z7 J% ]) D
References ..........................................................................................................543, f7 S; k9 Z) L- Y
Appendix E
' }$ r9 g- k- e. p( |Requirements and Examples of Cutting Tool Drawings................................545
7 m3 ]' b: H( ~ XE.1 Introduction ...........................................................................................545& {; E0 U0 z X4 H3 Y' `$ Q) R) i! K
E.2 Tool Drawings – the Existent Practice ..................................................546
8 Y8 L' |* K6 M5 u. DE.3 Tool Drawing Requrements ..................................................................5485 s' h+ T* k0 j3 A1 h; s x
E.4 Examples of Tool Drawing ...................................................................553
7 t9 p) U; ^, Y, R2 ]References ..........................................................................................................559
) @) _1 q: S2 c9 b8 B* @Index…………………………………………………………………………….561
' h/ V0 g& E h' L& [" R2 `
# h0 F/ U ~1 s6 ~0 M2 N5 S" O
* M. M5 j X8 H) s z( m( q& H) O; f- e
5#
发表于 2011-6-25 13:07:50 | 只看该作者
都是些神马?
6#
发表于 2011-6-25 13:33:41 | 只看该作者
埋头挖矿中。。。。。。。。。
7#
发表于 2011-6-26 15:14:56 | 只看该作者
好东西啊。。。只是,刀具不是我的工作。。。顶起,不沉。。。
8#
楼主 | 发表于 2011-6-26 18:10:54 | 只看该作者
专业人士自有看法。
9#
发表于 2011-6-27 18:42:38 | 只看该作者
好东西啊,英文的,看着太费劲了
10#
发表于 2011-6-27 21:53:22 | 只看该作者
从网上查找这本书是Springer Series in Advanced Manufacturing丛书中的一本" I% ^0 r2 q6 A/ [' s9 u5 w
请问这套丛书共包含哪几本书
您需要登录后才可以回帖 登录| 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址(京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号)

GMT+8, 2024-6-30 09:43, Processed in 0.063204 second(s), 18 queries , Gzip On.

Powered byDiscuz!X3.4Licensed

? 2001-2017Comsenz Inc.

快速回复 返回顶部 返回列表