|
粉末冶金工艺的优点: 1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。 2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。 3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。 4、粉末冶金法能保证材料成分配比的正确性和均匀性。 5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。 粉末冶金工艺的基本工序是: 1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。 2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。 3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。 4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。 粉末冶金材料和制品的今后发展方向: 1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。 2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。 3、用增强致密化过程来制造一般含有混合相组成的特殊合金。 4、制造非均匀材料、非晶态、微晶或者亚稳合金。 5、加工独特的和非一般形态或成分的复合零部件。重庆日租套房www.cqrygy.com7 [! ~) a" W% o8 z! s
缺点: 5 p$ ?# i' F9 S* ~; x* b( r
1:在没有批量的情况下要考虑 零件的大小.
: l- w- r; G: _0 h 2:模具费用相对来说要高出铸造模具. ( ~9 z- u% b1 x) ^; k
粉末冶金(P/M)技术是一门重要的材料制备与成形技术,被称为是解决高科技、新材料问题的钥匙…。高性能、低成本、净近成形一直以来是粉末冶金工作者重要研究课题之一。粉末冶金法能实现工件的少切削、无切削加工,是一种高效、优质、精密、低耗节能制造零件的先进技术。进入20世纪80年代许多行业,特别是汽车工业比以往任何时候更加依赖于粉末冶金技术,尽可能多地采用粉末冶金高性能的零部件是提高汽车尤其是轿车在市场中的竞争能力的一种有力手段。高密度的P/M产品是保证其具有优异的力学性能的关键因素。因此,为扩大粉末冶金P/M零部件的应用范围,必须提高其密度以获得力学性能优异的粉末冶金零部件。目前,常用来提高P/M零部件密度的技术途径主要有: 6 E1 k1 s& \& x, w; ?
压缩性铁粉的应用
7 O3 Q& E3 b i$ S, h' p 复压复烧 & N% W6 q( B0 Y7 ]1 B* [7 ]4 k) a T0 A
浸铜
" l* I ?3 Q5 T* h8 z 高温烧结
7 g! v- Z; j" A, h; I/ a3 v4 j1 b* G 粉末热锻等等 ( k+ j; y2 e2 b
由于这些工艺存在着不同程度的成本和工件尺寸精度保证困难等技术问题,使本富于竞争力的粉末冶金零件的潜力难以得到充分发挥。而流动温压粉末成型技术的发展使之成为提高P/M零件密度的有效途径。 9 ~) f1 d0 m/ d3 Q
1.流动温压粉末成型技术的发展 0 J* m: S' \3 s" h) m
1.1温压技术的发展 ]" L- Y1 ]6 d: y7 W, X
20世纪80年代末,Hoeganaes公司的Musella等人为提高零件密度,在扩散粘结铁粉制备工艺的研究基础上,将粉末和模具加热到一定温度进行压制,开发出一种所谓温压的新工艺,即ANCORDENSE工艺。温压工艺就是采用特制的粉末加温、粉末输送和模具加热系统,将混有特殊聚合物润滑剂的金属粉末和模具加热至130~150℃,然后按传统粉末压制工艺进行压制和烧结以提高压坯密度的新方法据资料分析,虽然温压工艺比常规的一次压制烧结工艺的相对成本提高了20%,但比渗铜工艺、复压烧结工艺、粉末热锻工艺分别降低了20%、30%和80%的成本,开拓了粉末冶金应用的潜力。因而被誉为“开创粉末冶金零件应用新纪元的一次新型制造技术”,为零部件在性能和成本之间找到一个理想的结合点,也被认为是进人90年代以来粉末冶金零件生产技术方面最为重要的一项技术进步"。目前,在粉末制备、工艺优选、温压及烧结行为、致密化机理等方面均进行了广泛的研究,并实现了工业化生产。 $ a; m9 {4 g1 ?: y
1.2金属注射成形技术的发展
9 `7 J' m6 j# N. }" k4 F; S 金属注射成形MIM(Metal Injection Molding)是传统粉末冶金工艺与现代塑料注射成形工艺相结合而形成的一门新型近净成形技术。最早可追溯于20世纪30年代开始的陶瓷火花塞的粉末注射成形制备,随后的几十年间粉末注射成形主要集中于陶瓷注射成形。直到1979年,由Wiech等人组建的Parmatech公司的金属注射成形产品获得两项大奖,以及当时的Wiech和Rivers先后获得专利,粉末注射成形才开始转向以金属注射成形为主导。
7 N( Y8 Y8 Z( Z5 k 1.3流动温压粉末成型技术的产生 ' R2 g' K$ u! A5 F4 V
金属粉末注射成形技术适用于大批量制造具有复杂几何形状、高性能、高精度的零件,在产业化方面也取得突破性进展。但该工艺在粉末中需要加人较多的粘结剂,粉末需用≤10um的超细近球形粉,从混料到脱脂、烧结,工序较复杂,工艺要求严格,特别是需要较长的脱脂和烧结时间,造成制造成本往往偏高。流动温压成形(WFC:Warm Flow Compaction)正是在金属粉末温压的基础上,结合了金属粉末注射成形工艺的优点,通过加人适量的粗粉和微细粉末以及加大热塑性润滑剂的含量而大大提高了混合粉末的流动性、填充性和成形性¨。由于在压制时混合粉末变成具有良好流动性的粘流体,既具有液体的优点,又有很高的粘度,并减小摩擦力,使压制压力在粉末中分布均匀,还得到了很好的传递。这样,粉末在压制过程中可以流向各个角落而不产生裂纹,从而使密度也得到了很大的改善。该技术由德国Fraunhofer先进材料与制造研究所(IFAM)于2001年首次报道。 9 r1 n; ?/ h+ A1 T# U
流动温压可以在80~130℃温度下,在传统压片机上精密成形形状非常复杂的工件,如带有与压制方向垂直的凹槽、孔和螺纹孔等的复杂工件,而不需要其后的二次机加工。WFC技术既克服了传统冷压在成形复杂几何形状方面的不足,又避免了注射成形技术的高成本,是一项极具潜力的新技术,具有广阔的应用前景。 ; V7 m; P" h$ p2 g
|
|