程学君 李应力 满艳茹 朱洪林
' o# A& V9 n& N4 o' w( d (大庆石化公司炼油厂)
( V2 n/ t. [: }& F/ j 摘要:分析了炼油厂加氢裂化装置高压换热器频繁内漏的原因,表明螺栓预紧力不够是导致高压换热器频繁内漏的 主要原因;提出应用预紧碟簧来补偿螺栓预紧力。结果表明,预紧碟簧能够很好地补偿由于系统波动而导致的螺栓预紧 力松弛,从而彻底解决加氢高压换热器的内漏问题。2 B/ H. |( o$ [5 Z9 t# ^0 d
0 B+ k) c3 [1 V; [) D 大庆石化公司炼油厂260 kt/年加氢裂化装置是 我国自行设计建造的第一套加氢裂化装置。其高压换 热器为立式中心管式换热器,规格型号为800mm× 15 000mm,管束材质为1Cr18Ni9T,i规格为19mm× 2 mm,管程介质为生成油、氢气,壳程介质为催化柴油、氢气。该换热器在2004年4月和8月先后2 次出现内漏,因此解决好该套装置的换热器内漏问 题,对装置的安全平稳生产具有重大意义。
9 W, o& z' ~* | 1 换热器工作原理. T; j1 A7 w# a6 ^+ T2 Y
: l/ J* T% a' i
该换热器为立式中心管式换热器,其结构如图1 所示。8 M% D5 y: H4 @9 a& S( W
管程介质(生成油、氢气)从三通套管侧面管 程入口进入,在管束内与壳程介质(催化柴油、氢 气)换热后到达管束底部浮头处,然后进入管束中 心的中心管,通过中心管返回到换热器顶部的管程出 口。壳程介质从三通套管侧面的壳程入口进入换热器 壳体与保温套之间的夹套(防止换热器外表面温度 过高)到达换热器底部浮头与保温套处折回,进入 保温套内侧与管程介质进行充分换热后回到换热器顶 部的壳程出口。
& k* C9 n3 _( e4 L) H 2 内漏原因分析4 I( E) A9 c$ L9 |+ g& u9 T( S
对于高压换热器的内漏,主要有以下几种情况:( ~; Q5 {/ c7 G3 ] e2 {) D) I
(1)管束换热管与固定管板的结合处因为腐蚀 或者焊接质量存在问题发生泄漏。
# V( ]1 ]$ t% P# N. I% u (2)换热管束当中的某一根或几根因为腐蚀或 者存在其他缺陷而穿孔造成泄漏。; J( d2 l D5 |9 D2 s+ b
(3)固定管板存在裂纹造成泄漏。
5 W, e3 O* a5 L8 k5 L. ?" \" l; M (4)换热器浮头密封失效而泄漏。
6 x: R6 Q5 o5 R2 m* w# b (5)管板与大盖连接密封失效而泄漏。在换热 器发生2次泄漏之后,将换热器芯子抽出进行试压并 未发现有泄漏之处,即排出了前3种情况的存在,因此造成换热器泄漏的原因是换热器浮头密封失效和管 板与大盖连接密封失效。4 C5 @) g, ]0 O
研究表明,密封失效往往与螺栓预紧力、密封面 状态、使用工况、垫片等因素有关。在2次换热器发 生泄漏后均对换热器密封面进行了检查,并未发现密 封面存在问题。浮头和管板与大盖连接处垫片均为齿 形复合垫(规格型号均为678/662 mm×4 mm, 0Cr18Ni9Ti),经检验合格,未发现垫片存在缺陷。 因此,密封发生失效的因素是由于螺栓预紧力不够或 者外界条件发生变化时螺栓没有对所发生的变化及时 给以补偿。3 B5 ^# [5 V9 E) [/ R
经过分析作者认为有以下3个方面造成内漏:
) y4 S2 ^! x8 h2 M! R (1)螺栓预紧力不够[1]。为保证密封系统紧密 和安全可靠地长周期运行,垫片表面必须有足够的密 封比压。过小的螺栓预紧力使受压后垫片表面的残余 压紧应力达不到工作密封比压,从而导致密封面泄 漏。
* m# z& ?& o$ s9 S3 Q (2)温度变化。随着原料油(催化柴油)组分 和进料量的变化,反应器出口温度波动,换热器的工 作温度在不断变化。而在高温和温度波动的工况下, 螺栓容易产生热变形,导致垫片松弛,密封面发生泄 漏。
4 [% Z' O1 l7 T; M4 E5 M (3)压力升降。在操作过程中系统压力并不是 恒定不变的,而是在一定的范围内波动,特别是在装 置处于非正常生产的情况下,压力波动幅度相当大, 有可能超出工作压力1~2 MPa,也有可能紧急泄压 到2~3MPa。压力在波动过程中,势必造成螺栓的 不断伸缩,以补偿压力升降导致的密封比压的变化。 在压力不断变化过程中,螺栓的疲劳强度降低,相应 的补偿压力达不到密封要求,最终造成密封失效,换热器内漏。8 p* `; `) p5 C1 {+ i
根据当时的操作记录显示,在2004年4月换热 器内漏前由于炼油厂瓦斯系统管网压力的波动造成加 热炉出口温度急剧下降,反应器出口温度相应下降, 最终导致换热器温度下降。在2004年8月换热器内 漏前由于原料带水导致反应器大盖造成泄漏,车间决 定降低原料进料量、降低系统压力后,对反应器大盖 进行处理。由此可见,高压换热器的2次内漏均与操 作波动密切相关。
$ g# m7 Z; S* [2 ^6 j) k, t 3 预紧碟簧的应用
" Y' k% V* }7 ^; F. S+ Q8 i0 p* f 针对造成高压换热器泄漏的原因,采取如下措 施:5 ]& O3 ~2 B; I/ n7 V
(1)螺栓的选择[2]。为减少螺栓应力集中部位,在加工完毕后,对螺栓采取固溶等热处理措施,消除 螺栓内部的残余应力,提高螺栓的抗疲劳强度。
# n6 @* p( c0 l3 j' K9 v (2)在回装浮头和大盖时,螺栓一定要均匀、 对称拧紧,并且要有足够的预紧力。3 B: z7 b4 @7 o. O j
(3)工艺操作平稳,尽可能减少温度和压力上的波动。
, H0 i' N8 n5 b$ P7 W( { (4)在浮头和大盖螺栓两侧安装高温预紧碟簧, 使换热器浮头和大盖在温度、压力的频繁波动下,预紧碟簧有足够的变形来补偿因此而引起的预紧力的改变,防止螺栓和垫片失效。
; V+ @2 B* E: L5 k J 碟簧[3]是采用特殊材质冲制而成的,可以在很小 的变形下提供足够的预紧力载荷,从而有效地减少密 封失效的风险,其外形如图2所示。其中D为外径, d为内径, D0为中性径(中性径是指碟簧截面翻转 点所在圆的直径, D0=(D-d) /ln(D /d)), t为厚度, H0为单片碟簧的自由高度, h0为碟簧压平时变 形量的计算值(H0-t)。; p7 n5 O$ Z0 d+ I |: H( S
) ?2 e3 U+ c+ c 当它受到沿周边均匀分布的轴向力F时,内锥 高度H0变小,相应地产生轴向变形λ。这种弹簧具 有变刚度的特性,当D、D0和t一定时,随着内锥高 度H0与簧片厚度t的比值不同,其特性曲线也不相 同,如图3所示。当H0/t≈1·5时,曲线的中间部分 接近于水平,即当H0/t=1·5左右时碟簧所受载荷基 本恒定,也就是说依靠碟簧变形而产生的密封比压不 因外界因素变化而变化。2 o9 w/ y3 @4 r& F9 s5 H0 Z# W
# c% A" y- \3 I& W 当螺栓拧紧时,吸收机械能转化成位能(势能) 储存在碟簧中,当设备由于温度变化、压力变化或 机械振动导致螺栓的预紧力松弛时,释放位能(势 能)转化成机械能,对螺栓的预紧力进行补偿,使 螺栓的预紧力始终保持在垫片密封所需要的预紧力范 围之内。2 a8 M9 q, K7 m, {
4 使用效果及注意事项! n5 N* N8 l8 |* ^9 J+ m
在2004年8月的检修过程中,对受温度和压力 变化较大的浮头和大盖螺栓一侧安装高温预紧碟簧。 截至到2007年7月检修,经过一个周期的运转,没 有出现因压力和温度波动等因素造成的高压换热器泄 漏,表明高温预紧碟簧对高压换热器螺栓的温度、压 力补偿效果明显,在防止螺栓和垫片失效方面起到了 积极作用。
8 [; e* C ^9 E. A 正确选用预紧碟簧对控制泄漏至关重要,只有 碟簧工作在恒定载荷区域,即有效补偿区域,碟簧 才能真正发挥其补偿作用。如果错误地选用压力过 小的预紧碟簧,在螺栓预紧力松弛30%后,将无法 提供密封所需的最小预紧力,效果等同于没有使用 碟簧。如果错误地选用压力过大的预紧碟簧,将超 过垫片材料的弹性极限产生永久变形,效果比不使 用碟簧还差。2 S" b! B! F) b8 ]! J% W5 @; n& i
5 结束语
2 B4 r; t7 K; ~0 ]9 D" n+ h% Q 通过对高压换热器内漏原因的分析,找到了造成换热器内漏的原因,并通过安装高温预紧碟簧,解决了换热器的内漏问题,减少因换热器内漏带来的临时停工次数,节省了检修费用,为装置的长周期安全平稳运行提供了有利保障。, ~" t! F! \ v6 l2 C- H( j
|