钛合金材料的激光焊接试验研究(摘要) 0 R- X/ k: m! d d ~7 Q钛合金材料具有比重轻、比强度高、耐蚀等特点,但价格昂贵,仅用于些特殊工程构件上。目前,多采用氩弧焊或等离子弧焊进行焊接加工,但该2种方法均需填充焊接材料,由于保护气氛、纯度及效果的限制,带来接头含氧量增加,强度下降,且焊后变形较大。采用激光焊接方法,可以实现该种材料的精密焊接,达到焊接质量好,焊深波动和焊接变形小。2 g* c: g3 g2 p+ g) A * X, A0 d, x) O2 K. t$ g4 ]/ j 1.试验材料——试验材料为TC4 (T i26A l24V )。 " o1 O; c" ]! B# A3 m9 M; t" ?2.试验条件——激光焊机为RS2000型轴流CO2激光加工机,额定输出功率为2kW,光束模式为基模,反射镜聚焦,焦距f=127mm,最小焦斑直径为50.4mm。TC4钛合金的板厚为2.0~3.5mm,保护气体为高纯氦气。% r7 _+ M+ P, Y& A& t \ 激光焊接工艺参数包括: / k( S/ Y: g% D5 g8 ]1)激光功率P,W;激光器的功率控制面板示出;4 f4 n' Y0 `6 q# V7 L( D; m 2)焊接速度v,m/s;由数控编程确定; . X r* Q, r* Z9 f" @' G: e O3)离焦量△f,mm;指光束焦点与工件表面的距离。2 X. @+ n6 i) V- l7 `% ] & f9 F0 X& H; ~; ~) f. y 3.试验方法——先进行阶梯试环焊接工艺试验,粗找工艺参数,并初步确定焊接工艺规范;焊接平板对接试样,利用X2射线探伤仪检测焊缝内部质量,并进行金相组织分析;焊接对接试环,用三坐标精密测试仪测量焊件轴向与径向焊接变形情况。 , m, }3 d* k8 f8 A1 `: u4 \3 }钛合金的焊接性取决于它的物理化学性能。钛是一种非常活泼的金属,由于表面形成致密的氧化膜,使其在常温下非常稳定。但是在高温下,钛则有强烈的吸氢、氧、氮的能力;空气中钛在250℃开始吸氢, 500℃开始吸氧, 600℃开始吸氮。随着温度提高,钛吸收气体的能力更强。氧、氮都是A相稳定元素,当其含量较少时,都作为间隙元素固溶在钛中,使钛的强度、硬度提高,而塑性急剧下降,氮的作用比氧更强。此外,钛合金焊接时容易产生气孔,形成气孔的主要因素有焊接工艺不正确、保护气体的纯度不够以及接头污染等。 $ ~% ~5 {" [8 w: M鉴于钛的高活性,钛合金焊前应对接头部位进行仔细清理。清理方法为先用机械方法去除表面氧化皮,然后进行酸洗。酸洗液为2%~4%HF+30%~40%HNO3+ H2O (余量)。最后用清水冲洗干净并烘干。临焊前用丙酮或酒精擦洗。清洗后的焊件必须在72h内焊完,否则需重新清理。' c" W3 t, \0 f+ N1 y S% k 激光焊接的焊缝成形机理和焊接效果有截然不同的二种焊接模式:热导焊和深熔焊。在二种焊接模式之间存在一种过渡的不稳定焊接过程,即存在一个过渡区间。因此要获得良好的焊接质量,首先根据使用要求,确定选用何种焊接模式,然后根据焊接模式制定合适的焊接参数:主要有激光功率、焊接速度和焦点位置(离焦量) ,原则上钛合金激光焊接参数应避开过渡区间,不能接近临界值。功率越高,熔深越大,焊接的厚度也越大,但过大的激光功率会使焊缝外观变坏,易产生一波一波的突起和空洞。在功率一定时,焊接速度决定着焊缝单位长度能量输入即线能量的大小,随着焊接速度增大,焊缝线能量降低,熔深和熔宽减少;焊接速度过大会使熔深减少,甚至断弧,在焊缝表面形成焊珠。焦点位于工件表面时,焊缝余高最大,只有焦点位于工件表面下一定距离处时,可获得最大熔深,这个距离与板厚及所使用的激光功率有关;过分的负离焦或正离焦均会使激光深熔焊与热传导焊交替出现,焊缝成形极不规则。7 R% Y) f% k1 H 由于激光焊接具有能量高度集中、焊缝成形好、操作简单、易实现自动化等优点,钛合金的激光焊接已日益普及。目前研究表明,如果钛合金激光焊接模式为稳定的热导焊,焊缝成形均匀,熔深和熔宽均很小,且几乎保持不变;如果为稳定的深熔焊,焊缝成形也很均匀,熔深和熔宽明显大于热导焊,且在一定范围内连续变化。但二种激光焊接模式之间的过渡区间大小(即焦点位置、激光功率、焊接速度的临界值)以及焊缝气孔的形成机理、来源、成分等需更深入地研究。 * S: x; U- f% p: C% T) ~ ! ]# D5 {3 D. Z) z+ v2 \/ b |