导语 6 M( K9 g9 ?) r
作为水上运输的主要交通工具,船舶的发展给人类的生活带来了很大的变化。早期的船舶大都以人力、蓄力、风力作为动力,直到1839年,第一艘带有螺旋桨推进器的蒸汽机船"阿基米德号"问世后,这种推进器被迅速推广。随着工业的发展,现代的轮船大都以内燃机作为动力,带动船体外的螺旋桨旋转,依靠螺旋桨与水产生的反作用力推进船舶的航行。毋庸置疑,发动机肯定在船体内部,因此必然需要传动装置将动力传递到暴露在水中的螺旋桨上,而这样的传动连接处必定会有一定的缝隙,那现代轮船是如何保证螺旋桨正常运转又实现防水防漏油的呢?本文将尽可能以通俗易懂的语言为大家讲解其中的原理。 - z+ k1 c& u% j: N- B! n
p, |, m% G8 @( _6 |6 j8 {* P
轮船螺旋桨
7 N0 ^2 v" u, L/ [3 O; j* F7 m螺旋桨的位置布局 " J: Z8 F2 @+ {7 {0 Z* ^' D
螺旋桨设置在船舶尾部后下方,其后面为舵叶。螺旋桨通过中间轴与主机连接,中间轴安装在尾轴管内,通过专用轴承连接。不难看出,螺旋桨处的密封能力主要体现在尾轴的密封能力。当然中间轴和船体之间不可能只加个普通的密封圈就行了。拿30万吨的货轮来说,螺旋桨的直径可达10米。即便转速只开到70rpm,那产生的振动也是巨大的,说不好在离港的时候,密封圈就被震掉了。即便不会,强大的海水压力也会使密封圈变形。
% C+ |4 Y8 L6 V; V! u9 V6 R/ } / Z$ r$ h( g/ k/ M
螺旋桨布局 $ ], J; l! |9 ?$ T; c
尾轴密封原理
3 \, U. C t* `/ m4 Z. ]
尾轴的密封是典型的旋转式动密封,简单来说,尾轴密封是通过注入油液,使其保持一定的油压来阻止水的渗入。但其密封绝不像说的那么简单,而是一个复杂的密封系统。
7 [$ D& }- l& e' v9 a( q ; x7 F/ t' v( k% |' f
图片来源:EAGLE INDUSTRY Kemel ' \) W4 v, ^' S7 D7 P- t$ V
大型轮船的尾轴系统由尾轴、尾轴管、密封装置、轴承、润滑系统等组成。其尾轴安装在尾轴管内,依靠前后两个轴承套运转。前后两个轴承之间为密闭的尾轴管。其中尾密封的任务要艰巨的多,既要防止水进入又要防止油液泄漏,因此本文我们重点讲解尾密封。 尾密封中目前广泛应用的是Simplex型(皮碗式)密封装置,这是一种获得各国船级协会认证的密封方式。皮碗密封基本原理如下图:当空间1的介质压力大于空间2的介质压力时,空间1的介质会被封住,不会流入空间2;当空间2的介质压力大于空间1时,空间2的介质会流入空间1。 6 q: ^, V- a3 W) {6 _6 a
6 J4 g% v/ K1 S/ q% d1 v
皮碗密封基本原理图 * c4 x- V) ~" Q+ h; H+ o$ j* |
将尾密封放大如下图: 7 w' j7 H2 M+ V/ g
$ {6 \. n, W( G" N1 I3 J
尾密封放大图 8 O8 Y, K$ t% D
# \# v- ^8 y0 Y" x! K3 N" `尾密封结构原理图 * e9 X& X0 ?" ~3 {# e0 T
我们可以看到尾密封采用了4组密封圈,通过弹簧箍在尾轴套上,在海水、弹簧力和橡胶弹力的作用下仅仅贴合在轴套上。这4组密封圈其中前两组往前翻,后两组往后翻。根据前面讲到的皮碗密封原理,我们可以把皮碗密封想象成一个单向阀。在#2#3之间压入空气,空气压力要比海水压力稍高。这样空气很容易冲开皮碗密封,从皮碗密封和尾轴之间通过,形成一个气流通道,使皮碗密封圈与尾轴隔开不接触,这样既可以保证尾轴转动顺畅又能减小磨损。同时因为空气压力高,海水也不会进入。而润滑油则是在空气密封失效的情况下加的一道保险装置。
6 b+ n* Q; D' G Y3 `
如何监测油封是否正常 F. T2 p$ e0 w& x' Q( q
! t: i( Q& I( H) g+ ^ S+ R
尾轴密封检测系统 ( j3 a3 M$ @8 @9 T& d3 T: e
尾轴由前后两道密封,同时在前后密封之间填充油,油是从一定高度的油柜下力的,称为重力油柜。既可以平衡压力又可以润滑轴承。一旦尾密封漏水会引起重力油柜有位升高,此时监测报警系统就会报警。而一旦尾密封泄漏的话,则会引起重力油柜的油位下降,此时监测系统报警就会知道前密封损坏了。 . \5 [( [& A3 [" z4 Y+ _, M+ Z
其实尾轴的密封是非常可靠的,只要按时检修,尾轴的密封十几年都不会有问题。但不管怎样,船只的防水都是一项极其重要的工作,因此不能掉以轻心。 |