再制造产业是指在原有产业基础上,将废旧产品利用技术手段进行修复和改造的一种产业。它是以产品全寿命周期理论为指导,以实现废旧产品性能提升为目标的一种产业。 3 ~5 Y2 W+ }2 ?7 {3 ^1 O/ r3 E熔覆(Cladding)属于再制造领域的关键技术。熔覆技术广泛应用于冶金、石化、电力、能源、交通、军工、轻工、磨具、机械制造、煤机、农机、水泥等诸多行业。典型应用包括:0 e- y* V7 s/ R (1)涡轮动力设备修复和改造;/ |) i/ J* ^" n, ~' M9 ~ (2)高载荷、低转速、高精度、高合金零部件的修复和强化; 6 @# ^, N& Y1 I" B: O(3)汽车覆盖件大型模具激光修复;2 D6 _9 n3 e4 |/ ^$ e! d (4)矿山机械零件的激光强化与修复;7 h! ]' N; ]: o, } 熔覆可以改善材料表面的性质。根据不同的工业应用,熔覆可以使材料变得耐磨,耐腐蚀,耐热等。硬化(Hardening)只是改变了基体材料表面薄层性质,相对而言,熔覆产生了完全不同于基体材料的新表面层。目前有多种方法实现熔覆,每种方法各有特点。但从质量、产量、兼容性及性价比等多方面综合考虑,激光熔覆(Laser Cladding)正越来越受到市场认可。由于激光能量集中,激光熔覆仅仅融化“基体材料的表面”和“覆层材料(Clad Material)”。激光熔覆产生的覆层质量很高。覆层材料空隙少,表面均匀。激光熔覆仅在特定部位注入特定能量,实现了对工艺参数的精确控制,省略后处理过程。减少熔融体,避免材料浪费。避免了基体材料的硬化。另外,伴随激光熔覆的自然淬火过程也使得熔覆材料更加致密。2 _4 G6 e7 E6 ]) ~ 覆层材料可以是线状,带状或者粉末状。由于待熔覆区域通常远大于光斑,光束总是沿着某个方向扫描工件表面。采用线状或者带状覆层材料时,光斑的短轴方向与光束扫描方向垂直。采用粉末状覆层材料时,光斑的长轴方向与光束扫描方向垂直。7 R7 h( A; w; V 激光熔覆的工艺参数主要有激光功率、光斑直径、熔覆速度等。激光熔覆各参数之间相互影响,是一个非常复杂的过程。通常来说,激光功率越高,熔覆层厚度越大,熔覆材料利用率越高。但激光功率也不能过高,因为激光功率越高,熔覆材料产生气孔的概率也越大。 # O$ x) j0 z# B- {# w% @当熔覆层深度达到极限深度后,随着功率提高,基体表面温度升高,变形和开裂现象也会加剧。当然,激光功率也不能过低,否则仅表面涂层融化,基体未熔,此时熔覆层表面出现局部起球、空洞等,达不到熔覆目的。为了得到最佳熔覆效果,客户需要根据具体应用反复摸索相关参数。 " I3 O9 l& C4 f# R' `目前市场上激光器种类繁多,哪种激光器更适合激光熔覆呢?气体激光器由于体积大、能耗高等原因,其市场应用正在逐步缩小。光纤激光器和碟片激光器虽然光束质量优异,但是熔覆硬化之类的表面热处理应用对光束质量的要求并不高,半导体激光器的光束质量足以胜任。此外,半导体激光器直接实现电光转换,整体效率高达50%以上。而固体激光器、光纤激光器和碟片激光器都需要半导体激光器作为光泵浦源,无论光光转换效率多高,整体效率仍然逊色于半导体激光器。从体积、能耗、光束质量等各方面综合考虑,半导体激光器是激光熔覆的首选。* e8 r5 D% a D9 n+ l: P3 E
+ p9 t/ O! ~- D |