高分子材料加工技术 - F2 T8 M* Q9 `4 ?1 }
, j n" }! h$ A7 }
4 _3 h) j& M i& j: a% O
b$ ?3 O; n6 [: Q 一.高分子材料概述:
& u, k: V7 v/ X# F) T
. H& r: T3 }" r( [ 材料是科学与工业技术发展的基础。一种新材料的出现,能为社会文明带来巨大的变化,给新技术的发展带来划时代的突破。材料已当之无愧的成为当代科学技术的三大支柱之一。高分子材料科学已经和金属材料、无机非金属材料并驾齐驱,在国际上被列为一级学科。
4 F" \: E' K* Q
; T; ~1 s3 O! R, }6 j, n, m 高分子材料科学是材料科学中的一个重要的分支学科。现代材料科学的范围定义为研究材料性质、结构和组成、合成和加工、材料的性能这四个要素以及它们之间的相互关系。高分子材料科学的基本任务是:研究高分子材料的合成、结构和组成与材料的性质、性能之间的相互关系;探索加工工艺和各种环境因素对材料性能的影响;为改进工艺,提高高分子材料的质量,合理使用高分子材料,开发新材料、新工艺和新的应用领域提供理论依据和基础数据。高分子材料科学是一门年轻而新兴的学科,它的发展要求科学和工程技术最为密切的配合,它的进步需要跨部门、多学科的最佳协调和共同参与。 ! L" a; G1 V7 c& l+ Y; D/ O0 H7 x* @
% N7 P) B0 w! c6 j7 p2 e$ C
目前各种合成高分子的应用已遍及国民经济的各部门,特别是军事及尖端技术对具有各种不同性能的聚合物材料的迫切需要,促使了高分子合成和加工的技术有了更快的发展,高分子成型和加工已经成为一种独立的专门工程技术了。由于加工技术理论的研究、加工设备设计和加工过程自动控制等方面都取得了很大的进展,产品质量和生产效率大大提高,产品适应范围扩大,原材料和产品成本降低,聚合物加工工业进入了一个高速发展时期。
' v4 Y) C9 ~" F! I* j; r( e' u* f7 s; g& `! V* u: I% c. K
8 y" {+ h# E! t3 s* S1 P' _, M- g* s% \* A0 A& h( C4 Y3 j
加工过程中高分子表现出形状、结构、和性质等方面的变化。形状转变往往是为满足使用的最起码要求而进行的;材料的结构转变包括高分子的组成、组成方式、材料宏观与微观结构的变化等;高分子结晶和取向也引起材料聚集态变化,这种转变主要是为了满足对成品内在质量的要求而进行的,一般通过配方设计、材料的混合、采用不同加工方法和成型条件来实现。加工过程中材料结构的转变有些是材料本身固有的,亦或是有意进行的;有些则是不正常的加工方法或加工条件引起的。
& {/ y- T: i& z* w, M- L7 q; ^
. V- f& r7 h9 ?+ z# w4 O 大多数情况下,高分子的加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状。高分子加工与成型通常有以下形式:高分子熔体的加工、类橡胶状聚合物的加工、高分子液体的加工、低分子聚合物或预聚物的加工、高分子悬浮体的加工以及高分子的机械加工。
% s/ b$ j, B" R3 j- T; y
3 o( n) s$ |& l" ? 除机械加工以外的大多数加工技术中,流动-硬化是这些加工的基本程序。根据加工方法的特点或高分子在加工过程中变化的特征,可用不同的方式对这些加工技术进行分类。通常根据高分子在加工过程有否物理或化学变化,而将这些加工技术分为3类:第一类是加工过程主要发生物理变化的;第二类是加工过程只发生化学变化的;第三类则是加工过程同时兼有物理和化学变化的。
5 P! L$ M- D) w9 u2 O) Z' x/ A6 N* d2 ^) y
这些加工技术大致包括一下四个过程:1.混合、熔融和均化作用;2.输送和挤压;3.拉伸或吹塑;4.冷却和固化(包括热固性高分子的交联和橡胶的硫化)。但并不是所有制品的加工成型过程都必须完成包括上述四个步骤。 E0 R& L, ?9 w% j' H# f0 t
) y$ T+ X% `) C ) i* S# p3 H% A. Z$ o% K& x. J
7 D+ |$ `$ ]" N! a- Q$ {4 h8 z 二.高分子材料加工原理:
6 W- M, g* D% S7 z/ I/ [3 j- l
% O+ x1 Y, P6 W3 ~
7 c! { C. \: I# S( \ i c! W# q- F$ O
1.高分子材料的加工性质:
4 y( Z s3 T+ j' w6 ]( v. p3 M9 | ~; v( b8 T1 G! ?0 ?9 G3 z) Q
1)、高分子材料的加工性: O. v, g) R' S/ k
5 Y6 s+ a. ^- Q1 Y* Q' f% s7 U 高分子具有一些特有的加工性质,如良好的可塑性,可挤压性,可纺性和可延性。正是这些加工性质为高分子材料提供了适于多种多样加工技术的可能性,也是高分子能得到广泛应用的重要原因。 * q* K7 L7 v+ e
' z+ b5 _ h3 H- D: x. |7 e
高分子通常可以分为线型高分子和体型高分子,但体型高分子也是由线型高分子或某些低分子物质与分子量较低的高分子通过化学反应而得到的。线型高分子的分子具有长链结构,在其聚集体中它们总是彼此贯穿、重迭和缠结在一起。在高分子中,由于长链分子内和分子间强大吸引力的作用,使高分子表现出各种力学性质。高分子在加工过程所表现的许多性质和行为都与高分子的长链结构和缠结以及聚集态所处的力学状态有关。
& _* ]% P1 Z- @% D' T8 i" M1 X$ h4 \6 N! K/ C: r3 P6 @) k3 m# L
根据高分子所表现的力学性质和分子热运动特征,可将其划分为玻璃态、高弹态和粘流态,通常称这些状态为聚集态。高分子的分子结构、高分子体系的组成、所受应力和环境温度等是影响聚集态转变的主要因素,在高分子及其组成一定时,聚集态的转变主要与温度有关。不同聚集态的高分子,由于主价健与次价健共同作用构成的内聚能不同而表现出一系列独特的性质,这些性能在很大程度上决定了高分子材料对加工技术的适应性,并使高分子在加工过程表现出不同的行为。
5 @4 N# f c0 W6 G" m5 ?' u2 i9 O2 v9 Y" c
高分子在加工过程中都要经历聚集态转变,了解这些转变的本质和规律就能选择适当的加工方法和确定合理的加工工艺,在保持高分子原有性能的条件下,能以最少的能量消耗,高效率地制备良好的产品。
. w- E6 ~5 q/ f4 \2 n
8 q: Y( N* [) R. ~8 K- G 玻璃态高分子不宜进行引起大变形的加工,表现为坚硬的固体,但可通过车、铣、削、刨等进行加工。在玻璃化温度Tg以下的某一温度,材料受力容易发生断裂破坏,这一温度称为脆化温度,它是材料使用的下限温度。
, ^) ^3 I8 n5 h- K* O
" Q" h, F, Z1 q+ \8 r2 G 在Tg以上的高弹态,高分子的模量减少很多,形变能力显著加大。在Tg-Tf温度区靠近Tf,由于高分子的粘性很大,可进行某些材料的真空成型、压力成型、压延和弯曲成型等。把制品温度迅速冷却到Tg以下温度是这类加工过程的关键。Tg是选择合理应用材料的重要参数,同时也是大多数高分子加工的最低温度。
& d% r7 o0 }1 Z$ F: ^8 L0 S
1 I9 s) B; P- m) O* n 在Tf以上,高分子化合物转变为粘流态,通常又将这种液体状态的高分子称为熔体。材料在Tf以上不高的温度范围表现出类橡胶流动行为。这一转变区域通常用来进行压延成型、某些挤出成型和吹塑成型等。比Tf更高的温度使分子热运动大大激化,材料模量降到最低值,这时高分子熔体形变的特点是不大的外力就能引起宏观流动,这时形变中主要是不可逆的粘性变形,冷却高分子就能将形变永久保持下来,这一温度范围常用来进行熔融纺丝、注射、挤出、吹塑和贴合等加工。过高的温度将使高分子的粘度大大降低,不适当的增大流动性容易引起溢料、形状扭曲、毛丝断裂等现象。温度高到分解温度Td附近还会引起高分子化合物的分解,以致降低产品物理机械性能或引起外观不良。
9 @- b3 s+ x0 t9 Z' c& V
! m2 c; l9 B% ^) ^ u 高分子在加工过程中常受到挤压作用,可挤压性是指高分子化合物通过挤压作用变形时获得形状和保持形状的能力。在挤压过程中,高分子熔体主要受到剪切作用,故可挤压性主要取决于熔体的剪切粘度和拉伸粘度。大多数高分子化合物熔体的粘度随剪切力或剪切速率增大而降低。如果挤压过程材料的粘度很低,虽然材料有良好的流动性,但保持形状的能力较差;相反,熔体的剪切粘度很高时则会造成流动和成型的困难。材料的挤压性质还与加工设备的结构有关。挤压过程高分子熔体的流动速率随压力增大而增加,通过流动速率的测量可决定加工时所需要的压力和设备的几何尺寸。材料的挤压性质与高分子的流变性,熔融指数和流变速率密切有关。
& X2 t& B. F/ F3 g: g, A j! P8 y7 A' Z- i/ F @! I0 y6 L; [
高分子的可模塑性是指材料在温度和压力作用下形变和在模具中模制成型的能力。具有可模塑性的材料可通过注射、模压和挤出等成型方法制成各种形状的模塑制品。可模塑性主要取决于材料的流变性,热性质和其他物理力学性质等,在热固性高分子的情况下还和高分子的化学反应性有关。过高的温度,虽然熔体的流动性大,易于成型,但会引起分解,制品收缩率大;温度过低熔体粘度大,流动困难,成型性差;因弹性发展,明显的使制品形状稳定性差。适当增加压力,通常能改善高分子的流动性,但过高的压力将引起溢料和增大制品内应了;压力过低时则造成缺料。模塑条件不仅影响高分子的可模塑性,且对制品的力学性能、外观、收缩以及制品中的结晶和取向等都有广泛影响。热性能影响高分子加工与冷却的过程,从而影响熔体的流动性和硬化速度,因此也会影响高分子制品的性质。模具的结构尺寸也影响聚合物的模塑性,不良的模具结构甚至会使成型失败。
) C0 m4 C) l1 \ @' A- v
1 V- z) s, p( N- M6 o 可纺性是指高分子材料通过加工形成连续的固态纤维的能力。它主要取决与材料的流变性质,熔体粘度、熔体强度以及熔体的热稳定性和化学稳定性等。纺丝材料,首先要求熔体从喷丝板毛细孔流出后能形成稳定细流。细流的稳定性通常与由熔体从喷丝板的流出速度,熔体的粘度和表面张力组成的数群有关。纺丝过程由于拉伸和冷却的作用都使纺丝熔体粘度增大,也有利于增大纺丝细流的稳定性。但随纺丝速度增大,熔体细流受到的拉应力增加,拉伸变形增大,如果熔体的强度低将出现细流断裂。故具有可纺性的高分子还必须具有较高的熔体强度。不稳定的拉伸速度容易造成纺丝细流断裂。当材料的凝聚能较小时也容易出现凝聚性断裂。对一定高分子,熔体强度随熔体粘度增大而增加。作为纺丝材料还要在纺丝条件下,高分子有良好的热和化学稳定性,因为高分子在高温下要停留较长的时间并要经受在设备和毛细孔中流动时的剪切作用。
2 L% c& H/ {, o, Y( {5 I
& L& C0 X/ c2 G5 n( j 可延性表示无定形或半结晶固体高分子在一个方向或两个方向上受到压延或拉伸时变形的能力。材料的这种性质为生产长径比很大的产品提供了可能,利用高分子的可延性,可通过压延或拉伸工艺生产薄膜、片材和纤维。但工业生产仍以拉伸法用的最多。线型高分子的可延性来自大分子的长链结构和柔性。可延性取决于材料产生塑性形变的能力和应变硬化作用。形变能力与固体高分子所处的温度有关,在Tg-Tm温度区间高分子化合物的分子在一定拉力作用下能产生塑性流动,以满足拉伸过程材料截面积尺寸减小的要求。对半结晶高分子拉伸在稍低于Tm以下的温度进行,非晶体高分子则在接近Tg的温度进行。适当地升高温度,材料的可延性能进一步提高,拉伸比可以更大,甚至一些延伸性较差的高分子也能进行拉伸。通常把在室温至Tg附近的拉伸称为“冷拉伸”,在Tg以上的温度下的拉伸称为“热拉伸”。当拉伸过程高分子发生“应力硬化”后,它将限制聚合物分子的流动,从而阻止拉伸比的进一步提高。
! b, j8 L' k, q, {1 _( C: Y$ T8 q* l- w
3 E# S( {* p+ e! K# P9 H 2)、加工过程中的粘弹行为: ( h0 d- l$ Z {4 ]6 q
% M6 U9 f% f/ {; b5 F$ T
高分子在加工过程中通常是从固体变为液体,再从液体变成固体,所以加工过程中高分子在不同条件下会分别表现出固体和液体的性质,既表现出弹性和粘性。但由于大分子的长链结构和大分子运动的逐步性质,高分子的形变和流动不可能是纯弹性的或纯粘性,而是弹性和粘性的综合既粘弹性。 * ^+ D4 J4 d2 I5 ]
: n1 b- H8 b2 S
当高分子在外力作用下发生普弹形变时,外力使大分子键长和键角或高分子晶体中处于平衡状态的粒子间发生形变和位移。推迟高弹形变是外力较长时间作用于高分子时,由处于无规则热运动的大分子链段形变和位移所贡献,形变值大,具有可逆性,它使高分子表现出特有的高弹性。粘性形变则是高分子在外力作用下沿力作用方向发生的大分子链之间的结缠和相对滑移,表现为宏观流动,形变值大,具有不可逆性。在通常的加工条件下,高分子形变主要由高弹形变和粘性形变组成。从形变性质来看包括可逆形变和不可逆形变两种成分,只是由于加工条件不同存在着两种成分的相对差异。当加工温度高于Tf以致高分子处于粘流态时,高分子的形变发展以粘性形变为主。此时,高分子粘度低流动性大,易于成型;加工温度低于Tf时,高分子转变成高弹态,随温度降低,高分子形变组成中的弹性成分增大,粘性成分减小,由于有效形变值减小,通常较少在这一范围成型制品。 5 U/ L" |' B1 U0 G5 u
8 U8 b2 e1 f4 z% x' a$ j
高分子在加工过程中的形变都在外力和温度共同作用下,大分子形变和进行重排的结果。由于大分子的长链结构和大分子运动的逐步性,高分子在外力作用时与应力相适应的任何形变都不可能在瞬间完成,通常将高分子于一定温度下,从受外力作用开始,大分子的形变经过一系列的中间状态过渡到与外力相适应的平衡状态的过程看成是一个松弛过程,过程所需的时间称为松弛时间。高分子对外力响应的这种滞后现象称为“滞后效应”或“弹性滞后”。在Tg-Tf温度范围对成型制品进行热处理,可以缩短大分子形变的松弛时间,加快结晶速度,使制品的形状能较快的稳定下来。 5 c$ v8 ^" k9 }- D7 c
1 G% l- k4 V" k + J$ M) a3 ?+ V$ |
. n9 _$ j6 d; R
2、高分子的流变性质:
& d/ N; ^; K1 D4 {3 ]7 c4 W
" U6 | w- m+ n, e% b 如前所述,在大多数加工过程中,聚合物都有产生流动和形变。高分子流变学就是认识应力作用下高分子材料产生弹性、塑性和粘性形变的行为以及研究这些行为与各种因素之间的关系。所以流变学对高分子加工有非常重要的现实意义。
/ a0 s- R4 O d7 y; l
' R5 V! R8 }6 R, M8 ~ 1)、高分子熔体的流变行为:
6 O3 {; \8 v7 A. Q. F; h1 Y0 K# M% r% E5 X$ G# V- K5 E
高分子在加工过程中的形变是由于外力作用的结果,材料受力后内部产生与外力相平衡的应力。受到剪切力作用产生的流动称为剪切流动。受到拉应力作用引起的流动称为拉伸流动。但是实际加工过程中材料的受力情况非常复杂,往往是三种简单应力的组合,因而材料中的实际应变也往往是多种简单应变的迭加。加工中流体的静压力对流体流动性质的影响相对不及前两者显著,但它对粘度有影响。高分子流体可以是处于粘流温度Tf或熔点Tm以上的熔融状聚合物,亦可以是在不高温度下仍保持为流动液体的高分子溶液或悬浮体。加工过程中高分子的流变性质主要表现为粘度的变化,根据流动过程高分子粘度与应力或应变速率的关系,将高分子的流动行为分为两大类:1.符合牛顿流动定律的牛顿型流体;2.非牛顿流体,其流动行为称为非牛顿型流动。
% p. ^5 |1 T6 k6 q/ C# _+ { l8 k5 H
通常加工条件下,对热塑性高分子加热仍是一种物理作用,其目的是使高分子达到粘流态以便成型,材料在加工过程所获得的形状必须通过冷却来定型。虽然,由于多次加热和受到加工设备的作用会引起材料内在性质的一定变化,但并未改变材料整体可塑性的基本特性,特别是材料的粘度在加工条件下基本没有发生不可逆的改变。但是热固性高分子则不同,加热不仅可以使材料熔融,能在压力下产生流动、变形和获得所需形状等物理作用;并且还能使具有活性基团的组分在足够高的温度下产生交联反应,并最终完成硬化等化学作用。一旦热固性材料硬化后,粘度变为无限大,并失去再次软化、流动和通过加热而改变形状的能力。因此热固性高分子加工过程中粘度的这种变化规律与热塑性高分子有着本质区别。热固性高分子的粘度也受剪切速率的影响,但化学反应-硬化速度的影响更重要。剪切作用增加了活性分子间的碰撞机会,降低了反应活化能,交联反应速度增加,熔体粘度随之增大。同时由于大多数交联反应是放热反应,系统温度的升高加速了交联固化过程,从而导致粘度更迅速增大。
) g; E) v3 o5 T2 B9 ?, V4 \! B
0 R$ p& z2 L4 K2 N' f3 X- W8 w 2)、影响高分子流变行为的主要因素:
: I& Z1 S( b, y. i
, v! I3 W$ e8 M( r6 W( K! Y 高分子熔体在任何给定的剪切速率下的粘度主要由两个方面的因素来决定:高分子熔体内的自由体积和大分子长链之间的缠结。自由体积是高分子中未被高分子占领的空隙,它是大分子链段进行扩散运动的场所。凡会引起自由体积增加的因素都能活跃大分子的运动,并导致高分子熔体粘度的降低。另一方面大分子之间的缠结使得分子链的运动变得非常困难,凡是减少这种缠结作用的因素,都能加速分子的运动并导致熔体粘度的降低。另外各种环境因素如温度、应力、应变速率、低分子物质等以及高分子自身的分子量,支链结构对粘度的影响,大都能用这两种因素来解释。对于处于粘流温度以上的高分子,热塑性高分子熔体的粘度随温度升高而呈指数函数的方式降低。高分子的聚集态不如想象的那么紧密,存在很多微小空穴,即“自由体积”,从而使高分子有了可压缩性。当压力作用使高分子自由体积减小时,大分子间的距离缩小,链段跃动范围减小,分子间的作用力增加,以致液体的粘度也随之增大。在通常的加工条件下,大多数高分子熔体都表现为非牛顿型流动,其粘度对剪切速率有依赖性。当剪切速率增加时,大多数熔体的粘度下降,但不同种类的聚合物对剪切速率的敏感性有差别。高分子的结构因素即链结构和链的极性、分子量、分子量分布以及高分子的组成等对高分子液体的粘度有明显影响。高分子链的柔性愈大,缠结点愈多,链的解缠和滑移愈困难,高分子流动时非牛顿性愈强。高分子链的支化程度愈大,粘度升高愈多,并导致流动性显著降低。高分子的分子量增大,不同链段偶然位移相互抵消的机会增多,因而分子链重心移动愈慢,要完成流动过程就需要更长的时间和更多的能量,所以高分子的粘度随分子量的增加而增大。高分子流动时的非牛顿行为是随分子量增加而加强的。通常用加入低分子物质和降低聚合物分子量的方法减小高分子的粘度,改善其加工性能。熔体的粘度也与分子量分布有关。一般,在平均分子量相同时,熔体的粘度随分子量分布增宽而迅速下降,其流动行为表现出更多的非牛顿性。分子量分布窄的高分子,在较宽剪切速率范围流动时,则表现更多的牛顿性特征,其熔体粘度对温度变化的敏感性比分子量分布宽的大。固体物质加到高分子中都会增大体系的粘度,使流动性降低;在高分子中加入有限的溶剂或增塑剂等液体添加剂,可形成聚合物的浓溶液或悬浮液,它们的存在能削弱高分子分子间的作用力,使距离增大,缠结减少,体系的粘度因而降低,流动性增大,出现非牛顿流动的剪切速率随体系中溶剂含量的增加而移向高的数值。 + D3 t5 E/ Q2 J. K2 [! [4 T
0 t q6 Q+ j# {" ^' @+ Q 5 n) ~, E' ~6 g$ t" n R
' s' k" u( \6 R 3、加工过程中的物理和化学变化: 5 s8 E6 [4 B2 o' e* ~. r/ N2 _
$ _% P; t8 }, Q/ f1 N 1)、加工过程中高分子的结晶: - F; b! j2 Q( S& P* p% P+ i! j3 C
% _# t* ]$ ?, H" H 通常将高分子在等温条件下的结晶称为静态结晶过程。但实际上高分子加工过程大多数情况下结晶都不是等温的,而且熔体还要受到外力的作用,产生流动和取向等。这些因素都会影响结晶过程。温度是高分子结晶过程中最敏感的因素,过冷度愈大,结晶时间愈短,结晶度降低,并使达到最大结晶度的温度下降。熔化温度与在该温度的停留时间会影响聚合物中可能残存的微小有序区域或晶核的数量。如果上次结晶温度高,则结晶度也高,晶粒较完整,故重新融化需较高温度;加工温度高,高分子中原有的结晶结构破坏愈多,残存的晶核愈少。在熔融温度低和熔融时间短,则体系中存在的晶核将引起异相成核作用,故结晶速度快,结晶尺寸小而均匀,并有利于提高制品的力学强度、耐磨性和热畸变温度。高分子在纺丝、薄膜拉伸、注射、挤出、模压和压延等成型加工过程中受到高应力作用时,有加速结晶作用的倾向。这是应力作用下高分子熔体取向产生了诱发成核作用所致,使晶核生成时间大大缩短,晶核数量增加,以致结晶速度增加。应力对晶体结构和形态也有影响。在剪切或拉伸应力作用下,熔体中往往生成一长串的纤维状晶体,随应力或应变速率增大,晶体中伸直链含量增多,晶体熔点升高。压力也能影响球晶的大小和形状,低压下能生成大而完整的球晶,高压下则生成小而形状很规则的球晶。高分子分子的链结构与结晶过程有密切关系。分子量愈高,大分子及链段结晶的重排运动愈困难,所以高分子的结晶能力一般随分子量的增大而降低。结晶过程分子链的敛集作用使高分子体积收缩、比容减小和密度增加,密度增大意味着分子链之间引力增加,所以结晶高分子的力学性能、热性能和化学稳定性等相应提高,但耐应力龟裂能力降低。 8 N6 ^* n/ V$ {$ H- d
! y6 w4 W* Y5 M4 d3 H
2)、加工过程中高分子的降解:
j0 O$ {( d' H* |
# v7 N, Y" D) Y6 m 高分子加工通常是在高温和应力作用下进行的,高分子可能由于受到热和应力的作用或由于高温下高分子中微量杂质及空气中氧的作用而导致分子量降低,大分子结构改变等化学变化。通常称分子量降低的作用为降解。除了少数有意进行的降解以外,大多数是有害的。因此加工过程大多数情况下都应设法尽量减少和避免高分子降解。必须严格控制原材料技术指标,使用合格材料;使用前对高分子进行干燥;确定合理的加工工艺和加工条件;加工设备和模具应有良好的结构;根据高分子的特性,特别是加工温度较高的情况,在配方中考虑使用抗氧剂、稳定剂等以加强高分子对降解的抵抗能力。
; n- h0 J- N0 v9 E% V
, r8 F& I+ D I 3)、加工过程中高分子的交联: * C+ ?) }- O+ q6 M/ y
1 O' k. x. E k; u% z( n
高分子加工过程,形成三维网络结构的反应称为交联,通过交联反应能制得体型高分子。同线型高分子比较,体型的机械强度、耐热性、耐溶剂性、化学稳定性和制品的形状稳定性等均有所提高。加工过程大多数情况下,高分子的交联都是通过大分子上活性中心间的反应与交联剂间的反应来进行的。可以分为游离基交联反应和逐步交联反应。交联反应既可以在大分子和低分子之间进行,也可以在大分子之间进行,通常至少有一种反应物质是线型高分子。温度、硬化时间、反应物的官能度和应力都会影响交联。
2 o8 }2 Z1 Z. q8 ~' }( z4 P- `+ E8 i- I* `: _& K
; d* s! P9 f# E* o/ ~) N; A9 k
- b; M1 z' f. k3 Y; w4 B
三、高分子材料的成型加工: , E" e! V4 G) c
$ g3 g( [, k; B0 d6 T7 E: f! v" J8 B5 f
; C& `( d7 n# H! @# w; M, F- _( v
" U! a& b- Y1 s! ] 塑料、橡胶和纤维是三大高分子合成材料。目前从原料树脂制成种类繁多、用途各异的最终产品,已形成规模庞大、先进的加工工业体系,而且三大合成材料各具特点,又形成各自的加工体系。下面以塑料成型工业为主,分别对三大合成材料的成型加工作简要介绍。 4 u7 j& B. W O ^
$ }" x$ U0 \7 Z/ h* p8 s
8 E2 T' B. [) {' H `
/ ?' K# o2 w1 X% i: y
1、塑料的成型加工: : B& ?4 g$ t, Z" e
1 _6 K7 H/ m! p( j1 ^* J! b+ F
塑料成型加工一般包括原料的配制和准备、成型及制品后加工等几个过程;成型是将各种形态的塑料,制成所需形状或胚件的过程。成型方法很多,包括挤出成型、注射成型、模压成型、压延成型、铸塑成型、模压烧结成型、传递模塑、发泡成型等。机械加工是指在成型后的制件上进行车、削、铣、钻等工作,它是用来完成成型过程中所不能完成,或完成得不够准确得工作。
$ C* r7 y) z2 l7 Y0 m$ [
2 x1 j) r y f6 [+ w 1)、成型物料的配制:
1 P8 B/ |7 \* w+ ?3 S5 t/ g" u1 [: O) _) f) w5 B
由于简单组分的塑料性能单一,难于满足要求,通常通过配制手段,将添加剂和高分子形成一种均匀的复合物。从而能够满足对制品的多种需要。为了使用和加工的方便,成型加工用的物料主要是粒料和粉料。它们都是由树脂和添加剂配制而成。主要的添加剂有:增塑剂、防老剂、填料、润滑剂、着色剂、固化剂等。聚合物或树脂是粉状塑料中的主要组分,其本身的性能对加工性能和产品性能影响很大,主要是表现在分子量、分子量分布、颗粒结构和粒度的影响上。下图是分子量与材料性能的关系。 / b1 p D( \0 B0 ?
- h' M/ @0 m& E; T, b
- v% s; a$ y' K% u+ w) k! {) Z/ L1 y; v% n0 m
上图是增塑剂对聚氯乙稀流动行为的影响。增塑剂通常是对热和化学试剂都很稳定的一类有机化合物。增塑过程可看成是高分子和低分子互相溶解的过程,能增加塑料的柔韧性、耐寒性。高分子在成型加工过程或长期使用过程中,会因各种外界因素的作用而引起降解或交联,并使高分子性能变坏而不能正常使用。为了防止或抑止这种破坏作用加入的物质统称防老剂。它主要包括稳定剂、抗氧剂、光稳定剂等;起抑制降解、氧化、光降解和消除杂质的催化的作用。为了改善塑料的成型加工性能,提高制品的某些技术指标,赋予某些新的特性,或为了降低成本和高分子单耗而加入的一类物质称填料。为了改进塑料熔体的流动性能,减少或避免对设备的粘附,提高制品表面光洁度等,而加到塑料中的一类添加剂称为润滑剂;与润滑剂相似的但仅是为了避免对塑料金属设备的粘附和便于脱膜,而在成型时与塑料接触的模具表面的物质,则常称为脱膜剂,亦称润滑剂。为使制品获得各种鲜艳夺目的颜色,增进美观而加入的一种物质称为着色剂。某些着色剂还具有改进耐气候老化性,延长制品的使用寿命的作用。在热固性塑料成型时,有时要加入一种可以使树脂完成交联反应或加快交联反应的物质,称为固化剂。
" q% o) L8 R: t6 Q+ V" y+ K9 k6 ?/ [9 {4 s4 { G
在塑料制品的生产中,只要少数高分子可单独使用,大部分都要与其他物料混合,进行配料后才能应用于成型加工。所谓配料,就是把各种组分互相混在一起,尽可能的成为均匀体系。为此必须采用混合操作,而混合、捏合、塑炼都是属于塑料配制中常用的混合过程,是靠扩散、对流、剪切三种作用来完成的。配制一般分为四步:原料的准备、初混合、初混物的塑炼、塑炼物的粉碎和粒化。
7 Q" c$ l6 Q2 z* P' J0 u6 a% A5 |* f2 h3 F. R4 B2 n
2)、塑料的成型: , W: T! @: I0 n
+ q0 T# S8 b" D: N! O- { 在大多数情况下成型是通过加热使塑料处于粘流态的条件下,经过流动、成型和冷却硬化,而将塑料制成各种形状的产品的方法。 5 [/ }' e3 e, `" O- P! P% F! W
3 U0 W, M# p; O; E6 U$ o, ]
* H! G2 O3 l3 }
: u- f9 i& V& C, R2 z! f
挤出成型又称挤压模塑或挤塑,即借助螺杆或柱塞的挤压作用,使受热熔化的塑料在压力推动下,强行通过口模而成为具有恒定截面的连续型材的一种成型方法。能生产管、棒、丝、板、薄膜、电线电缆和涂层制品等。这种方法的特点是生产效率高,适应性强,几乎可用于所有热塑性塑料及某些热固性塑料。 6 x* C! ~6 `# g- S# o
; d7 t, D& B4 U) M 挤出设备目前大量使用的是单螺杆挤出机和双螺杆挤出机,后者特别适用硬聚氯乙稀粉料或其他多组分体系塑料的成型加工。通用的是单螺杆挤出机。主要包括:传动、加料装置、料筒、螺杆、机头与口模等五部分。
" T5 e/ v2 j Q6 [- P
5 X0 e; ]6 i( T/ |' y+ H 挤出的过程一般包括熔融、成型和定型三个阶段。 第一是熔融阶段,固态塑料通过螺杆转动向前输送,在外部加热和内部摩擦热的作用下,逐渐熔化最后完全转变成熔体,并在压力下压实。在这个阶段中,塑料的状态变化和流动行为很复杂。塑料在进料段仍以固体存在,在压缩段逐渐熔化而最后完成转变为熔体。其中有一个固体与熔体共存的区域即熔化区。在该区,塑料的熔化是从与料筒表面接触的部分开始的,在料筒表面形成一层熔膜。随着螺杆与料筒的相对运动,熔膜厚度逐渐增大,当其厚度超过螺翅与料筒的间隙时,就会被旋转的螺翅刮下并将其强制积存在螺翅前侧形成熔体池,而在螺翅后侧则充满着受热软化和部分熔融后粘结在一起的固体粒子以及尚未熔化的固体粒子,统称为固体床。这样,塑料在沿螺槽向前移动的过程中,固体床的宽度就会逐渐减小,直到全部消失即完全熔化而进入均化段。在均化段中,螺槽全部为熔体充满。由旋转螺杆的挤压作用以及由机头、分流板、过滤网等对熔体的反压作用,熔体的流动有正流、逆流、横流以及漏流等不同形式。其中横流对熔体的混合、热交换、塑化影响很大。漏流是在螺翅和料筒之间的间隙中沿螺杆向料斗方向的流动,逆流的流动方向与主流相反。这两者均由机头、分流板、过滤网等对熔体的反压引起。挤出量随这两者的流量增大而减少。塑料的整个熔化过程是在螺杆熔融区进行的,塑料的整个熔化过程直接反映了固相宽度沿螺槽方向变化的规律,这种变化规律,决定于螺杆参数、操作条件和塑料的物性等。 挤出过程的第二阶段是成型,熔体通过塑模(口模)在压力下成为形状与塑模相似的一个连续体。第三阶段是定型,在外部冷却下,连续体被凝固定型。
4 k/ ^4 @- n, v" x6 F" m
* f; K \4 ~) G9 i 适于挤出成型的塑料种类很多,制品的形状和尺寸有很大差别,但挤出成型工艺过程大体相同。其程序为物料的干燥、成型,制品的定型与冷却、制品的牵引与卷取(或切割),有时还包括制品的后处理等。原料中的水分或从外界吸收的水分会影响挤出过程的正常进行和制品的质量,较轻时会使制品出现气泡、表面晦暗等缺陷,同时使制品的物理机械性能降低,严重时会使挤出无法进行。因此使用前应对原料进行干燥,通常控制水分含量在0.5%以下。表中的数据仅是一般的情况,随聚合物的分子量、制品的形状和尺寸以及挤出机的种类不同而变化,且挤出过程中螺杆的转速、料筒中的压力和温度都是互相影响着的,应视具体情况而加以调整,挤出过程中料筒、机头及口模中的温度和压力分布,一般具有如图所示的规律。 挤出过程的工艺条件对制品质量影响很大,特别是塑化情况,更能直接影响制品的物理机械性能及外观决定塑料塑化程度的因素主增大螺杆的转速能强化对物料的剪切作用,有利于物料的混合和塑化,且对大多数塑料能 降低其熔体的粘度(图6—21)
% D( Y0 ^( w9 ]! ~6 {2 I
, E- Y; L1 M( ]. p, x% ~. u% B 常见的管材、吹塑薄膜、双向拉伸薄膜的成型便各有特点。现对常用的挤出成型工艺过程简述如下:1、热塑性塑料管材挤出成型:管材挤出时,塑料熔体从挤出机口模挤出管状物,先通过定型装置,按管材的几何形状、尺寸等要求使它冷却定型。然后进入冷却水槽进一步冷却,最后经牵引装置送至切割装置切成所需长度。定型是管材挤出中最重要的步骤,它关系到管材的尺寸、形状是否正确以及表面光泽度等产品质量问题。定型方法一般有外径定型和内径定型两种。外径定型是靠挤出管状物在定径套内通过时,其表面与定径套内壁紧密接触进行冷却实现的。为保证它们的良好接触,可采用向挤出管状物内充压缩空气使管内保持恒定压力的办法,也可在定径套管上钻小孔进行抽真空保持一恒定负压的办法,即内压式外定径和真空外定径。内径定型采用冷却模芯进行。管状物从机头出来就套在冷却模芯上使其内表面冷却而定型。两种定型其效果是不同的。适用于挤出管材的热塑性塑料有PVC,PP,PE,ABS,PA,PC,PTFE等。塑料管材广泛用于输液、输油、输气等生产和生活的各个方面。2、薄膜挤出吹塑成型:薄膜可采用片材挤出或压延成型工艺生产,更多的是采用挤出吹塑成型方法。这是一种将塑料熔体经机头口模间隙呈圆筒形膜挤出,并从机头中心吹入压缩空气,把膜管吹胀成直径较大的泡管状薄膜的工艺。冷却后卷取的管膜宽即为薄膜折径。薄膜的挤出吹塑成型工艺,按牵引方向可分为上引法、平引法和下引法三种。平引法一般适用于生产折径300mm以下薄膜。下引法适用于那些熔融粘度较低或需急剧冷却的塑料如PA、PP薄膜。这是因为熔融粘度较低时,挤出泡管有向下流淌的趋向,而需急剧冷却、降低结晶度时需要水冷,下垂法易于实施之故。上引法的优点是:整个泡管在不同牵引速度下均能处于稳定状态,可生产厚度尺寸范围较大的薄膜,且占地面积少,生产效率高,是吹塑薄膜最常用的方法。3、双向拉伸薄膜:扁平机头挤出工艺通称平挤。薄膜的双向拉伸工艺是将由狭缝机头平挤出来的厚片经纵横两方向拉伸,使分子链或结晶进行取向,并且在拉伸的情况下进行热定型处理的方法。该薄膜由于分子链段定向、结晶度提高,各向
/ h2 Q0 a/ J* q' ^- ]) Q6 B' C7 a& V7 j
异性程度降低,所以可使拉伸强度、冲击强度、撕裂强度、拉伸弹性模量等显著提高,并改进耐热性、透明性、光泽等。4、挤拉成型纤维增强热 固性树脂基复合材料常用的成型方法主要有缠绕成型、叠层铺层成型、真空浸胶法、对模模压法、手糊法、喷射法、注射法、挤拉法等。一些长的棒材、管材、工字材、T型材和各种型材主要采用挤拉成型方法。此法成型的产品可保证纤维排列整齐、含胶量均匀,能充分发挥纤维的力学性能。制品具有高的比强度和比刚度、低的膨胀系数和优良的疲劳性能,同时根据需要还可以改变制品的纤维含量或使用混杂纤维。此方法质量好、效率高,适于大量生产。成型原理是使浸渍树脂基体的增强纤维连续地通过模具,挤出多余的树脂,在牵伸的条件下进行固化。
4 d0 F7 G* \7 z' u$ C* O$ k5 W: l4 N( G% N4 N
注射成型简称注塑,是指物料在注射机加热料筒中塑化后,由螺杆或注塞注射人闭合模具的模腔中经冷却形成制品的成型方法。它广泛用于热塑性塑料的成型,也用于某些热固性塑料(如酚醛塑料、氨基塑料)的成型。注射成型的优点是能一次成型外观复杂、尺寸精确、带有金属或非金属嵌件、甚至可充以气体形成空芯结构的塑料模制品;生产效率高,自动化程度高。注射成型的原理是将粒料置于注射机(见图11-6)的料筒内加热并在剪切力作用下变为粘流态,然后以柱塞或螺杆施加压力,使熔体快速通过喷嘴进入并充满模腔,冷却固化。其生产过程包括如下几个步骤,且周而复始进行。清理准备模具->合模->注射->冷却->开模->顶出制品。
9 q+ A9 ^, [4 F# [: q
$ S; v( ~$ ~6 K0 e/ S 压制成型,是塑料成型加工技术中历史最久,也是最重要的方法之一,主要用于热固性塑料的成型。根据材料的性状和成型加工工艺的特征,又可分为模压成型和层压成型。模压成型又称压缩模塑,这种方法是将粉状、粒状、碎屑状或纤维状的塑料放入加热的阴模模槽中,合上阳模后加热使其熔化,并在压力作用下使物料充满模腔,形成与模腔形状一样的模制品,再经加热(使其进一步发生交联反应而固化)或冷却(对热塑性塑料应冷却使其硬化),脱模后即得制品。模压成型与注射成型相比,生产过程的控制、使用的设备和模具较简单,较易成型大型制品。热固性塑料模压制品具有耐热性好、使用温度范围宽、变形小等特点,但其缺点是生产周期长,效率低、较难实现自动化,因而工人劳动强度大,不能成型复杂形状的制品,也不能模压厚壁制品。 " T0 [0 g, V7 ~6 q7 e/ k6 {
; t! L7 ~( Q$ U6 y) d0 W1 \5 M
压延成型是生产薄膜和片材的主要方法,它是将已经塑化的接近粘流温度的热塑性塑料通过一系列相向旋转着的水平辊筒间隙,使物料承受挤压和延展作用,成为具有一定厚度,宽度与表面光洁的薄片状制品。用作压延成型的塑料大多是热塑性非晶态塑料,其中以聚氯乙烯用得最多,它适于生产厚度在0.05—0.5毫米范围内的软质聚氯乙烯薄膜,和0.25—0.7毫米范围内的硬质聚氯乙烯片材。当制品厚度大于或低于这个范围时,一般均不采用压延法而采用挤出吹塑法或其它方法。压延成型具有较大的生产能力(可连续生产,也易于自动化),较好的产品质量(所得薄膜质量优于吹塑薄膜和T型挤出薄膜),还可制取复合材料(人造革、涂层纸等),印刻花纹等。但所需加工设备庞大,精度要求高、辅助设备多,同时制品的宽度受压延机辊筒最大工作长度的限制。
& Z! q" x; T" g
; {! |3 v+ j j/ g 在塑料成型加工技术中还采用铸塑成型、模压烧结成型、传递模塑成型、发泡成型等方法生产各种型材或制品。在此就不一一累诉了。
$ @( N% S e/ D8 S+ ~! K/ l' O; H! G, k# o
- {' w J& f7 T, B0 X
6 f( o/ P$ A! [, C. y* {
2、橡胶成型加工: ' F4 e1 F" {5 R9 c4 V
+ p( W, F b& A/ z
橡胶的加工分为两大类。一类是干胶制品的加工生产,另一类是胶乳制品的生产。干胶制品的原料是固态的弹性体,其生产过程包括素炼、混炼、成形、硫化四个步骤。胶乳制品是以胶乳为原料进行加工生产的。其生产工艺大致与塑料糊的成型相似。但胶乳一般要加入各种添加剂,先经半硫化制成硫化胶乳,然后再用浸渍、压出或注模等与塑料糊成型相似的方法获得半成品,最后进行硫化得制品。热塑性弹性体(TPE)是指常温下具有橡胶弹性、高温下又能像热塑性塑料那样熔融流动的一类材料。这类材料的特点是无需硫化即具有高强度和高弹性,可采用热塑性塑料的加工工艺和设备成型;如注塑、挤出、模压、压延等。 / E) C7 ]& N i" K
& H( j$ k% y" v: N6 ]( ~ 2 F) \9 @9 k) k, i
7 d) ^3 s7 J8 S3 I* B0 V 3、化学纤维成型加工:
% s$ B+ }% Q- J0 l% Q: Z$ r& v3 Q6 X
化学纤维的成型加工主要是纺丝方法,而纺丝又分为熔融纺丝和溶液纺丝两大类。凡能加热熔融或转变为粘流态而不发生显著分解的成纤聚合物,均可采用熔融纺丝法进行纺丝。溶液纺丝是指将聚合物制成溶液,经过喷丝板或帽挤出形成纺丝液细流,然后该细流经凝固浴凝固形成丝条的纺丝方式。按凝固浴不同又分为湿法纺丝和干法纺丝。 % ~1 T; s; t0 s( ]* Q
四、聚氯乙稀的加工成型:
0 u5 |3 C/ b5 n- R
8 w" t7 F2 j6 Z9 i# v. ] 聚氯乙稀的缩写代号是PVC。按照产量,聚氯乙稀在世界范围和我国皆是占据五大通用塑料的第二位。 4 I2 Y# p- g* a" d) W# [
- A0 q. a# ^" J! [& A' D 2 G/ a) ^* r8 L: M3 k
) f$ I6 ?3 c, S* O" e* j" P9 M 1、工艺特性:
4 y3 h( m2 Y: Y" b" R: i7 m0 ~- t2 Z8 |7 W0 n8 D
聚氯乙烯具有如下成型加工工艺特性:1、热稳定性差。为避免材料过热分解,应尽量避免一切不必要的受热现象,严格控制成型温度,避免物料在料筒内滞留时间过长(特别是生产启动和班次交接时),并应尽量减少塑化过程中的摩擦热。聚氯乙烯熔融粘度高,熔融加工工艺中应尽量避免使用分子量太高的品级,配料中应加入适当润滑剂以增加物料流动性,稳定剂应采用效率较高的有机锡类,如马来酸二丁基锡、二月桂酸二正辛基锡等。注塑成型不宜采用柱塞式注塑机。2、聚氯乙烯熔体粘度高,需要较高的成型压力,为避免熔体破裂,注塑、挤出时宜采用中、低速,避免高速。3、聚氯乙烯热分解时放出氯化氢,对设备有腐蚀作用,加工的金属设备应采取电镀的防护措施或采用耐腐钢材。4、聚氯乙烯熔体冷却速度快(比热容仅为836—1170kJ/(kg·K),且无相变热),成型周期短。 % ]# ?/ N: p4 r& Y5 C
" ]9 m6 }0 z- v, {) E8 {
; `& I" Q! o% t( I% l' o2 h
7 L3 e+ D5 S9 {/ C6 ]" ?
2、加工工艺 5 j# O, W3 M. O0 B' e3 s. q7 M) o* ~
: _) q$ }) ~1 x% x- z( n# j2 _9 o: j
聚氯乙烯可以采用注塑、挤出、吹塑、压延、搪塑、发泡等成型工艺。对于增塑聚氯乙烯制品,成型加工前需先向聚氯乙烯粉料或颗粒料中加入增塑剂和其它助剂进行预混,并进行塑化。将塑化后的配料准备成适于加工的形状,例如采用注塑、挤出工艺时,则需要挤出造粒;用于压延工艺时,需要先预压成软板。注塑成型主要用于硬聚氯乙烯。硬聚氯乙烯注塑成型工艺条件列于表4-1。聚氯乙烯可以挤出成型各种型材,也可以挤出吹塑薄膜。表4—2和表4—3分别是聚氯乙烯管材和聚氯乙烯薄膜的挤出成型工艺条件。
4 _6 l ]! ^2 l; _) e9 H6 K+ H4 E
3、聚氯乙稀的应用: 8 i0 K. U1 v; M
6 K$ H V. J6 x, Q, p( B8 s
3 U2 K" n, k% Y
& p' d) Q3 x! j 聚氯乙烯的应用主要集中在制备以下几方面的制品:1、薄膜和人造革,薄膜主要供农用。2、耐油、耐腐、耐老化的不燃电线电缆包皮、绝缘层。3、种型材如管、棒、异型材、门窗框架;瓦楞板及建材、室内地板装饰材料、各种板材。4、家具、玩具、运动器材、医用管件、包装涂层等。
/ {# Z A2 P! j0 N) j8 V0 U. b2 C- b9 ] }4 s; _! a
1 [' g/ p2 O) W9 Q1 u/ }
) R/ e) [+ m6 e# @1 k F 4、聚氯乙稀的改性:
- ]8 m7 n& \! m9 o4 u8 |9 J; `1 J- _4 o
. C5 m) |8 t" G: [; s 聚氯乙稀的缺点是软化点低,耐热性和耐寒性差,韧性也欠佳,特别是热稳定性差,此外熔体粘度也较高,加工较困难。为克服这些缺点,就产生了各种改性的聚氯乙烯。一、氯化聚氯乙烯:氯化聚氯乙烯又称为过氯乙烯,系由聚氯乙烯树脂经氯化后所得。1,氯化方法:制取氯化聚氯乙烯主要采用悬浮氯化法。将聚氯乙烯树脂粉悬浮于浓度为20%左右的盐酸(或水)中,用氯仿或二氯乙烷为膨润剂,借以形成稳定的悬浮体。用过氧化物、引发剂引发或紫外光照射,在常压和60~65℃温度的条件下通人氯气进行氯化。氯化后的聚氯乙烯含氯量可达到66%~67%。2.性能改善:氯化聚氯乙烯比之聚氯乙烯性能上有明显改善,主要表现在耐热性和耐寒性提高。未氯化的聚氯乙烯最高连续使用温度仅65~80C,氯化后的聚氯乙烯可提高到100℃。未氯化的聚氯乙烯脆化温度仅一20℃,氯化后的聚氯乙烯脆化温度可达到一45℃。氯化聚氯乙烯的拉伸、弯曲强度比聚氯乙烯皆有所提高,耐腐蚀、耐老化性进一步提高,阻燃性也进一步提高,有限氧指数从原来的47提高到60左右。氯化聚氯乙烯密度大于聚氯乙烯,且含氯量愈大,密度愈大,当含氯量为65%时,密度为1.52 g/cm。二、共聚改性: 将氯乙烯与某些其它单体共聚,可以改善聚氯乙烯的某些性能。1.氯乙烯与乙酸乙烯共聚。用过氧化物引发剂使二单体进行悬浮或溶液共聚,可以得到含乙酸乙烯10%一25%的共聚物。氯乙烯-L酸乙烯共聚物分子链中,含有侧基氯原子和乙酰基,降低了分子链的有序性,故乙酸乙烯进人共聚物分子链实际上起到了内增塑作用,使共聚物熔体流动性增大;韧性和耐寒性也得到改善,但也因此使材料耐化学试剂、耐溶剂性降低,强度、硬度也不及聚氯乙烯。2.氯乙烯与丙烯共聚: 氯乙烯与丙烯的共聚物可由过氧化物引发使二单体进行悬浮共聚而得,其中共聚物中丙烯含量不超过10%。这种共聚物比之聚氯乙烯的性能改善是流动性增大,不仅可进行注塑成型,还可中空吹塑形状复杂的容器。共聚物的热稳定性比聚氯乙烯提高,还具有良好的透明性和耐化学试剂性,可用以制备医药、食品的包装容器。3.氯乙烯与丙烯腈共聚:采用本体法、溶液法、悬浮法、乳液法等共聚合,都可以制得氯乙烯与丙烯腈的共聚物,但乳液法最常用。乳液共聚时用过硫酸盐为引发剂。共聚物中丙烯腈含量在20%~60%的范围内。氯乙烯丙烯腈共聚物的软化点比聚氯乙烯有大幅度提高,可达到140~160℃,故耐热性也有较大程度提高。含有60%丙烯腈的共聚物基本性能与聚丙烯腈相似,可以抽丝作为纤维,织物手感好,保温性优,难燃,耐酸碱,不怕虫蛀。4.氯乙烯与丙烯酸酯共聚:氯乙烯可以与许多丙烯酸酯类单体共聚,共聚方法可以是乳液法或悬浮法。共聚物的软化点比聚氯乙烯高,流动性也比聚氯乙烯好,有利于成型加工;共聚物的冲击韧性、耐寒性也比聚氯乙烯有明显改善。这种共聚物是透明材料,可以制造座舱玻璃、仪表面板。5.氯乙烯与偏二氯乙烯共聚:氯乙烯与偏二氯乙烯两单体可以在过氧化物、偶氮化合物或过硫酸盐的引发下进行共聚。共聚可采用乳液法或悬浮法,两种单体比例可以在很大范围内改变,所得到共聚物的性能和用途明显不同。作为塑料、涂料、胶粘剂使用的共聚物,偏二氯乙烯含量不超过60%,一般主要采用乳液共聚合。作为纤维使用的共聚物,偏二氯乙烯含量可达到75%~90%,主要采用悬浮共聚合。偏二氯乙烯与氯乙烯结构接近,二者的共聚物保持了聚氯乙烯的许多特点,由于主链由两种单体构成,使共聚物比之聚氯艺烯均聚物或聚偏二氯乙烯均聚物的流动性皆有明显改善,这是由于两单体的存在互相起着内增塑作用。偏二氯乙烯链节的存在使共聚物分子链间距增大,使共聚物流动性优于纯聚氯乙烯均聚物。纯聚偏二氯乙烯由于分子链的对称性,是高结晶度聚合物,熔融温度高,氯乙烯单体的存在又破坏了聚偏二氯乙烯分子链的对称性,使共聚物软化点降低,因此共聚物加工性比聚氯乙烯有所改善。氯乙烯—偏二氯乙烯可采用注塑、挤出、吹塑方法加工。共聚物的强韧性和透明性优于聚氯乙烯,耐油性、耐化学试剂性、耐光性也较好,阻燃性亦优,但最大的特点是透气性、透湿性均很小,适宜于作为密封性包装材料。 |