一板翅式换热器的发展现状0 y$ R! i* ~) |# R* V p
- w! c: Y! _! ^( v& q# H, m
板翅式换热器首先应用于汽车和航空工业,20世纪50年代开始在空分设备中应用。冶金、化学工业对空分设备的大量需求,有力推动了板翅式换热器的技术进步。在我国,铝制板翅式换热器由杭州制氧机集团公司(以下简称:杭氧)等在20世纪60年代中期开发成功,使我国成为继英国、美国和日本之后第四个能够生产这种换热器的国家。但杭氧当时设计生产的铝制板翅式换热器多以低压换热器为主(<2.0MPa)。随着空分技术的不断发展,尤其是内压缩流程的不断成熟和应用,要求板翅式换热器的设计压力提高。尤其进入20世纪80年代以来,随着我国内地和沿海油田的不断开发和石油化工行业的快速发展,承受中、高压的板翅式换热器应用日趋广泛,由于国内无法制造中、高压力的板翅式换热器,当时我国用于大型空分设备和石油化工设备中的中、高压板翅式换热器全部依赖进口。/ G% m- ^* ]+ A* V9 k2 Z
9 g/ i) w" d$ `2 n' x. i
1992年杭氧从美国S.w公司引进大型真空钎焊炉的同时,引进了该公司的设计程序和工艺文件。通过技术引进,使杭氧在板翅式换热器制造技术上不仅能生产低压换热器,而且还能生产高压换热器,为我国产品进入国际市场提供了技术保证。同时,经过设计人员的努力研发,杭氧中、高压板翅式换热器的设计和制造技术有了很大的发展和完善,技术更加成熟,制造工艺更加完善。到目前为止,杭氧生产的中、高压板翅式换热器(3.8MPa以上)已有200多台,且运行情况良好,从未发生过安全事故。
0 @* _, }, S; n
W. g F( U0 l0 V$ Q 二高压板翅式换热器整体结构' e' k2 l- j. G& C
) C$ v* I7 x3 J 高压板翅式换热器芯体由隔板、翅片和封条3部分组成。在相邻两隔板之间放置翅片及封条,组成一夹层,称之为通道。对于高压板翅式换热器,由于承受的压力较高,隔板与翅片、封条的钎焊要求也比较高,隔板的复合层要比低压换热器隔板的复合层厚,封条的宽度也需相应增加。按,ASME规范第Ⅷ卷第一分册uG一101的规定,凡容器或容器部件的强度难以准确计算时,其最大许用工作压力可按试样爆破压力来确定。板翅式换热器芯体由于结构复杂,钎焊缝的检查受到结构限制,不可能进行无损检测和其他检查,也无法做强度核算,所以只能通过试样的爆破试验来确定。按ASME规范规定,试样的爆破试验压力应是最大许用工作应力的3~5倍,且以翅片母材拉伸断裂为合格标准。对于高压板翅式换热器,其翅片的最大许用工作压力相应提高。为了达到这一要求,应选择性能较好的翅片材料,同时增加翅片的厚度。杭氧最常用的两种高压翅片特性参数见表1。
6 _* e8 Y( u4 J 三设计计算$ _+ V2 Z. H: q2 a/ {% k, e' s
0 F! e1 @! I2 p3 y0 K( o" A 3.1高压翅片的选择) p# X2 W i, Q9 \3 K* e! ^2 e
3 k' I2 G1 } F. T* g 高压板翅式换热器由于流体的压力很高,杭氧在设计时一般都选用多孔形翅片。随着空分设备设计水平的不断提高及内压缩流程和高压板翅式换热器在石油化工行业中的普遍应用,高压板翅式换热器的设计越来越复杂,流体之间的压力等级往往差别很大,这给翅片的选择造成了一定的难度。某一内压缩流程空分设备主换热器的运行参数见表2。' E* p7 {" ?5 V9 L4 u2 S
# y3 u9 H( ^7 D! I0 _0 d 1 L; j1 g% g0 D/ e9 r; T
1 \! t* j1 |( j 从表2可知高压流体的工作压力很高,而低压流体的工作压力又很低。显然对于高压流体只能选择多孔形翅片(到目前为止,国内还生产不出最大许用工作压力在8.0MPa以上的铝制锯齿形翅片);而对于低压流体,从翅片的传热面积及翅片的传热因子(.)方面考虑,多数情况下会选择锯齿形翅片,这样在流体传热计算中就很难设计板式的外形尺寸(计算长度不匹配),同时翅片选择不当也给制造带来很多问题。8 m$ |0 [$ r3 W" l+ D
+ C6 C3 A$ k! d. Z7 U% o# q. w
经过杭氧技术人员的努力研究,终于克服了这一设计上的难关。对于高压流道采用最先进的高密度多孔形翅片,以增加其传热面积并尽量增大其传热因子;对于低压流道采用节距较大的锯齿形翅片以降低其阻力损失,同时适当增加低压翅片的翅片厚度,以提高整个芯体的刚性,提高钎焊的成功率。+ I+ C: ~" Q* t# a
# |' u; b+ X) a% l% W 3.2 流道布置3 \6 u2 w6 `' a$ Y6 t7 Z1 s+ N
* F+ g' z2 v8 ?" Y. b/ ?
板翅式换热器可以通过流道的不同组合,布置成逆流、错流、顺流和多程流等多种形式。对于高压板翅式换热器,杭氧一般都采用逆流,多股流高压板翅式换热器有时也采用多程流。流道的布置方式有两种:其一是单叠布置,即1个热流体通道与1个冷流体通道相间布置;其二是复叠布置,即2个冷流体通道与1个热流体通道相间或者2个热流体通道与1个冷流体通道相间布置。对于高压板翅式换热器,这两种流道布置方式都可运用,但需根据具体情况来确定。
1 b1 @/ k0 B) @" Z/ b% {' w6 N5 q 3.3高压板翅式换热器中表面传热系数及流体阻力的准则关系
5 W7 T/ d$ O# A1 e$ J$ r* x) E6 t$ m1 N+ _# j" S$ ?( U. s" H( R
6 `9 j, X# S V8 ?
. {0 S6 X$ z( g) S
7 s1 [7 c2 Y" v% I0 H; U
3.4 翅片效率与表面效率! Z- v& a" [; N+ j7 h/ D0 \2 B {' I
高压板翅式换热器的翅片效率与表面效率由于流道布置方式的不同,其计算方法也有区别。# o4 f; V. f8 ^3 l5 f; D2 s- C6 u
3.4.1 单叠布置的翅片效率与表面效率
3 V3 G& A j( x: M3 D% y' B& N4 R/ S$ _% o+ r: E) I, p8 ?
' o5 y; b- Q4 w" O3 ^ 3.4.2复叠布置的翅片效率与表面效率
7 x# B, T0 D% ]* F ; Q% i, G# B9 x0 S; j: w! b) D$ ]* i2 j" ?
复叠布置中的单个通道的翅片效率及表面效率的计算方法与单叠布置的相同。# v" k. I; j2 J+ X5 R4 e
g, i6 E4 Y) Z" l8 U4 v- \
复叠布置中复叠通道应按下述方法处理。有效传热面为:" `% M& g3 B6 E, x( \5 B
只是其中传导距离z应取为翅片高度h。其中复叠的两个通道只有一半的隔板表面作为一次表面,而另一半亦应作为二次表面参加传热,其相应的效率玑按式(7)计算:
- I" C- k" q" b; C 3.5气流均匀分配问题
d4 i3 |) j9 F" t
0 f9 {" [, Z! j# [1 M* ]! _: l 对于高压板翅式换热器的高压侧流体,由于流体的压力较高,流体在板翅式换热器中的流速一般不会很高(对于高压流体与低压流体换热的高压换热器),且多采用多孔形翅片,阻力损失一般对流体的均匀分配影响很大,流体的偏流问题比较严重,应引起足够的重视,并适当增加设计余量;而对于低压侧流体,由于流速相对于低压换热器流速较高,流体的阻力损失相应增大,从而使流体在板翅式换热器中更为均匀地流动,达到最好的换热效果。5 ?% w; W3 y% ~9 `
: o7 P3 u+ O* C! `
四高压板翅式换热器的特点
+ ]2 z' }( m$ ^, V3 ^' v7 e / h( @* q& C& G
(1)传热效率高。由于翅片对流体的扰动,使边界层不断破裂,从而具有很大的表面传热系数;同时由于铝具有很强的导热性、高密度翅片具有更小的当量直径,使得高压板翅式换热器具有很高的传热效率。8 O5 z! Q' [7 J% i
/ P0 W1 h8 w1 e: E7 |' B7 @# B% U
(2)承受压力高,降低能耗。以往高压换热器大多采用绕管式换热器,因绕管式换热器的单位体积传热面积小,换热器的温差较大,使小温差换热难以实现。空分设备是耗能较大的设备,对于大型钢铁企业而言每年的耗电量很可观,一般占其总耗电量的12%,而换热器的温差每减小1oC,能耗可降低约2%。而高压板翅式换热器由于可以承受8.0MPa以上的压力,且传热效果好,热端温差甚至可以小于2oC,其节能效果十分明显。
+ J5 t7 `, S7 h: y5 i: b & M* f4 b) h( ]& I
(3)结构紧凑。由于翅片具有扩展的二次表面,使得板翅式换热器的比表面积可达1000~2500m2/m3。9 v ]7 Z- P: q; J: F4 u
# _ X4 ~" j& \% l! [- N (4)设备轻巧,适应性大。9 A( v( M2 Q0 S( o1 j
" Z5 S8 |# R6 y1 {, \ 五应用前景
2 T/ L7 S2 ]) H9 ~, t 0 O$ h3 b) ?$ x
近年来铝制板翅式换热器在我国发展很快,在不断吸取国外先进技术的条件下,生产工艺更趋成熟,产品质量显著提高,检验手段更加完善,杭氧生产的板翅式换热器的使用寿命一般都在20年左右。经济发展推动着空分行业的进步,也推动着高压铝制板翅式换热器的发展和前进,目前杭氧生产的高压板翅式换热器已经广泛应用于空分及石油化工行业,而且大量出口到美国等发达国家。杭氧高压板翅式换热器的设计与制造水平已达到20世纪90年代末期国际先进水平,为参与国际竞争奠定了坚实的基础。随着科学技术的不断进步和高压板翅式换热器翅片形式及翅片材料的不断开发,高压板翅式换热器将在更多行业中发挥更大的作用。
) g- v( u' ~0 N6 z3 ~
1 l1 H! Z4 `) ~& g& _9 \! i2 @ |