机械必威体育网址

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 1032|回复: 0
打印 上一主题 下一主题

英文全书下载 Viscoelastic Materials. Roderic Lakes 2009 《粘弹性材料》

[复制链接]
跳转到指定楼层
1#
发表于 2015-1-9 22:34:06 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
本帖最后由 陈小黑 于 2015-1-9 22:37 编辑
, v, \9 C3 F' h0 e4 Y( t. q6 L2 d0 o3 R2 u- O6 K5 r( D* I
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下载次数: 6)   b' |+ q, Z- a' i$ F/ ^

# ^; U0 G0 w2 T& { Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下载次数: 6)
. k3 @: h, h! \2 I! O
8 q4 b5 L5 }, J- k+ }目录
2 V+ Y5 n4 V2 x. i$ {1 J& D" H/ O. i+ d
Contents
5 t: F6 m: m- J+ A& I* \* v' N1 a$ E9 w: C
Preface page xvii. G  `9 k$ L( z
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
! z* T4 _( |8 w1.1 Viscoelastic Phenomena 1. m+ v4 `% i: ^) o7 J
1.2 Motivations for Studying Viscoelasticity 3
* q( ]9 L/ W9 t1.3 Transient Properties: Creep and Relaxation 3( `( G3 N, v$ _% M- V8 O1 N. `
1.3.1 Viscoelastic Functions J (t), E(t) 3& Z9 L. p; q9 ?- _1 \! s7 P
1.3.2 Solids and Liquids 7' J) j, t& K& o4 f6 w" G, j! n8 _
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
; u4 q$ M4 y6 F% P/ T' w1.5 Demonstration of Viscoelastic Behavior 106 _2 c  Z* ?* ~
1.6 Historical Aspects 10) ?$ C5 t% K. d5 P+ P' g
1.7 Summary 11
: m- S; ?5 J5 u5 j5 S) F9 \1.8 Examples 11& A, v2 S3 C+ c: N
1.9 Problems 125 m) f3 g7 g8 M& q0 k
Bibliography 12& i  y& o+ w+ \

4 o6 E6 v+ U5 d) R: y1 P
6 z8 u- x6 c& W( T2 h: z
3 w7 `0 {/ U: |% V
; M5 n5 E6 {- |: Q
/ P* z) T) }! v- Q! N! g" l* F
/ z* q4 P( W! C& L( ]( W' V" C- g2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, M/ O2 k# b; d* @
2.1 Introduction 14' i/ ^6 D- f7 B. ]
2.2 Prediction of the Response of Linearly Viscoelastic Materials 145 X" @6 E0 `5 Q0 R2 O
2.2.1 Prediction of Recovery from Relaxation E(t) 14
( G9 }) p1 b% R; `/ _9 |8 h2.2.2 Prediction of Response to Arbitrary Strain History 15
5 D5 I) U- ^8 s; W8 z$ [+ b! N) W' v0 _2.3 Restrictions on the Viscoelastic Functions 17
6 k1 }- ^" I6 v" n2.3.1 Roles of Energy and Passivity 17% }# f8 E$ k+ m6 W3 E0 r1 a5 j* {4 s, w
2.3.2 Fading Memory 18
; h5 f6 B; k' S9 J2.4 Relation between Creep and Relaxation 19- z1 O& D/ d8 i* `/ x3 L1 y# ~, J
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19$ B% F5 C% I4 _- L; X' N! j
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20' r9 A0 z* o( W+ M' K  e3 E9 q
2.5 Stress versus Strain for Constant Strain Rate 207 e0 y) @) a2 x' c: p; ]% s
2.6 Particular Creep and Relaxation Functions 21
$ p: \# K5 C! s! P5 f6 k. R  ~2.6.1 Exponentials and Mechanical Models 21
3 Q5 K3 H; o! A' ]3 U: M% l9 M5 n2.6.2 Exponentials and Internal Causal Variables 269 |( k, Q9 r9 c! ?  U
2.6.3 Fractional Derivatives 27
9 I( X! O( J/ G! |2.6.4 Power-Law Behavior 28* g* W+ D! u9 z3 x
2.6.5 Stretched Exponential 29
8 _/ f7 @  P1 U% g2.6.6 Logarithmic Creep; Kuhn Model 29
/ q, G3 w# x) d% ~$ R7 b$ i# Y2.6.7 Distinguishing among Viscoelastic Functions 30
/ }& A  A" }! o+ C* F( Q; M2.7 Effect of Temperature 30
" \. n; p/ e9 n% h7 g2.8 Three-Dimensional Linear Constitutive Equation 33
- Z, o# L  J# _  I) q2.9 Aging Materials 35
8 G- X* M2 n6 U6 b" y+ T, y1 ]% `2.10 Dielectric and Other Forms of Relaxation 35" F2 @8 ~, \+ f# H) v
2.11 Adaptive and “Smart” Materials 36
3 L. N9 Z8 t. S  U+ p: [; V, r( H2.12 Effect of Nonlinearity 37
- I) r! F$ b  ]. f2.12.1 Constitutive Equations 37
3 s* e# d9 I* m2.12.2 Creep–Relaxation Interrelation: Nonlinear 40' F' A8 K- u1 N3 L
2.13 Summary 43
- s) @1 [: c8 h) K0 C/ E2.14 Examples 43! H+ V( N1 j; B( o6 ?- v8 k
2.15 Problems 51
8 V! I" Z- o  [  ?0 S; p9 kBibliography 52
! j1 T) T: b$ g/ l, b* q% Z# c7 U8 c, }0 j4 ^8 {. @
0 s- ~. m! E+ R0 P" g) s8 j5 Y
0 j, D; R% A* @- f( V* F+ m( G

* Y  L+ l' l$ @5 B  _5 p. B9 h9 i3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  K2 v- C4 }) @8 X
3.1 Introduction and Rationale 55
$ a3 S8 f" H, t' S9 b/ C1 V! V3.2 The Linear Dynamic Response Functions E∗, tanδ 56
, T# d$ K+ `6 D% w3 i* ^4 q3 z3.2.1 Response to Sinusoidal Input 57
$ {% z3 P8 X$ B# }- k, V3.2.2 Dynamic Stress–Strain Relation 59
% T! {9 R2 q) ]/ M3.2.3 Standard Linear Solid 62
, q/ f  V2 ~; _1 u3 F; m/ F% V* Y3.3 Kramers–Kronig Relations 63) p$ t7 w  p8 x. y3 n! ~
3.4 Energy Storage and Dissipation 65( @- X0 ?8 `; ~: m; z
3.5 Resonance of Structural Members 67
& a: ~" l$ w5 d5 Q+ O8 s3.5.1 Resonance, Lumped System 67
8 v# C9 z/ R% e3.5.2 Resonance, Distributed System 71
, M+ E, A; S6 i7 H3.6 Decay of Resonant Vibration 745 m- _, h4 a4 R$ a+ a5 s
3.7 Wave Propagation and Attenuation 77
# e# K! A# V6 [2 ^5 N  P, M+ F3.8 Measures of Damping 79
/ B9 }5 \8 R+ o: S6 C3.9 Nonlinear Materials 79
3 T3 Z$ M3 e) P. l3.10 Summary 81
+ z. r) ^: y/ e' w* }3.11 Examples 81
7 y& w- ~# C1 b3.12 Problems 88
3 [& ^4 B' f( W3 MBibliography 89
2 ?& E: M8 m9 r. @4 B* c6 e6 `* W# _' c- A& w
  t) K- w' D, T0 L8 x9 I

8 q, V( _$ E' T- M4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 919 r, k3 z7 U. D+ u  |. c
4.1 Introduction 917 g. g9 i# o$ a  |! ~6 d8 v2 h
4.2 Spectra in Linear Viscoelasticity 92
% z! I2 j6 q, t+ @$ k0 a5 G4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 923 S: q9 l0 z0 t0 Z6 X
4.2.2 Particular Spectra 933 V$ a5 n/ u" V/ L% O
4.3 Approximate Interrelations of Viscoelastic Functions 95, s# N. _4 k0 T- R( x
4.3.1 Interrelations Involving the Spectra 958 N  X: B% O5 i( R# F0 o) O9 E
4.3.2 Interrelations Involving Measurable Functions 98: C" A  s  Q+ p' t3 P
4.3.3 Summary, Approximate Relations 101( h+ ?8 L9 L# g0 ^7 P# d
4.4 Conceptual Organization of the Viscoelastic Functions 101
+ i$ P7 E, k; v7 ~4.5 Summary 104: a& T" L9 Y8 A1 S' k; M9 D
4.6 Examples 1042 k, B+ V0 q8 l3 s/ X
4.7 Problems 109
7 S) h9 C* w8 E7 C# S$ B- r( J+ WBibliography 109
4 M- \1 X) f1 j/ T3 y' |8 t4 I% s; v+ Z3 \5 [$ T: M6 Q5 o- E
! I8 E2 m6 E+ f, r3 T
  h# q- }0 j$ j3 ?5 M$ l8 V5 q
5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
+ \0 P. f4 }$ G( d) j  B, W5.1 Introduction 111
0 j% c# T/ I$ a5.2 Three-Dimensional Constitutive Equation 111
) D' y& a; e7 ^3 r! o" A5.3 Pure Bending by Direct Construction 112
, d, {. n7 \" z3 m7 I2 Q2 S5.4 Correspondence Principle 114
* Q9 ~* u- K: g% F8 M3 q5.5 Pure Bending by Correspondence 116
+ N' I% P+ i( S6 r- _! F5.6 Correspondence Principle in Three Dimensions 116. r8 i& O3 E7 |7 r
5.6.1 Constitutive Equations 116. @  E9 }& ?# s" L: x% ^2 z
5.6.2 Rigid Indenter on a Semi-Infinite Solid 1177 I& A. i5 K' h4 ]7 v) D
5.6.3 Viscoelastic Rod Held at Constant Extension 1190 K( ?: |- n( X" P5 O" w
5.6.4 Stress Concentration 119& `/ d7 z3 b& k* P4 c* A7 g
5.6.5 Saint Venant’s Principle 120, |4 Q% L; h( {( y
5.7 Poisson’s Ratio ν(t) 121
+ F0 m9 f0 I3 n; L8 p5.7.1 Relaxation in Tension 121* H/ F, N+ C! j5 L  u/ l
5.7.2 Creep in Tension 123" Y+ i  q4 D+ ?0 @% G
5.8 Dynamic Problems: Effects of Inertia 124
+ A) q" L  k" p  h6 z5.8.1 Longitudinal Vibration and Waves in a Rod 124
$ _6 _$ @, @% w4 H5.8.2 Torsional Waves and Vibration in a Rod 125
% d& i$ \. F6 ~5.8.3 Bending Waves and Vibration 128
9 Y# d; `# c9 Y4 {6 g8 @" i5.8.4 Waves in Three Dimensions 129
6 Z0 ~0 b0 h" y7 q. t1 s5.9 Noncorrespondence Problems 131
7 {) ?) K- ^7 n8 ~" L, c. S6 o5.9.1 Solution by Direct Construction: Example 131  M- C- X' ?# U
5.9.2 A Generalized Correspondence Principle 1324 x, C9 o  c- [/ {: D8 X
5.9.3 Contact Problems 1323 F) j. K6 U- C
5.10 Bending in Nonlinear Viscoelasticity 1338 S# x# o  \# x) \% N3 F- L
5.11 Summary 134; \1 {& M6 Q& w) [: L$ d
5.12 Examples 134' S) M  I* M0 M2 g
5.13 Problems 142
1 I6 I% [  ]: o: FBibliography 142: |0 ~6 ~* k  }; {, F" i- G+ v/ c* K1 i

; K1 K2 {& R* M& a3 _9 f# w9 p4 `

+ O. Y% G3 h6 k1 |& s! O6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458 g5 x4 h4 ?+ v, g
6.1 Introduction and General Requirements 145
# ?3 f- `' m5 m1 b' e. ~6.2 Creep 146  z7 a) ]. [' d3 ~! P
6.2.1 Creep: Simple Methods to Obtain J (t) 1468 ^- r% c% z. v4 e
6.2.2 Effect of Risetime in Transient Tests 146
" ]9 d# }/ g8 E, ^# N6 F6.2.3 Creep in Anisotropic Media 148
, c- t8 X1 W/ \/ h6.2.4 Creep in Nonlinear Media 148* K5 b+ X5 f5 P1 p
6.3 Inference of Moduli 1508 @' {# I- l' S" S+ M
6.3.1 Use of Analytical Solutions 150; U( E* y/ p0 D
6.3.2 Compression of a Block 1512 V$ L' H8 G$ Y3 N
6.4 Displacement and Strain Measurement 152
; n- Y  r- ~3 R- L& F6.5 Force Measurement 156* M4 _; {! A  M! a* E9 }0 [
6.6 Load Application 157
6 \4 `5 s( v' e+ k1 \. a+ I6.7 Environmental Control 157
, ?: d5 `* C* [! t6.8 Subresonant Dynamic Methods 1583 l) b7 Z9 F' ]9 H/ Q3 t9 }( b. w5 q
6.8.1 Phase Determination 158! C1 }, m- m2 B  d
6.8.2 Nonlinear Materials 160
* n4 K: y9 H1 k6 v7 p) {8 G3 M6.8.3 Rebound Test 161+ x" @$ F: c/ F+ @0 v- K+ z
6.9 Resonance Methods 161
/ d7 z) X. r" P* h# N, l6.9.1 General Principles 161
9 S/ i# N" L% D6.9.2 Particular Resonance Methods 163
; Z* K6 v6 B! Q# y6.9.3 Methods for Low-Loss or High-Loss Materials 166
( q- r- |( e9 n) o4 b: N0 o) K0 G6.9.4 Resonant Ultrasound Spectroscopy 1684 C7 |% r; ^5 H6 A, r
6.10 Achieving a Wide Range of Time or Frequency 171* m5 S' z* a5 C: A8 j
6.10.1 Rationale 171
" Q9 m0 I2 L- E' S' o6.10.2 Multiple Instruments and Long Creep 172; F- [% v2 ^7 G" R; ^$ h! l
6.10.3 Time–Temperature Superposition 172; S5 u  i; G1 d5 R( N
6.11 Test Instruments for Viscoelasticity 173' f" y: o5 m8 P% r2 F# n# y
6.11.1 Servohydraulic Test Machines 173+ H2 b- D% j: N! o1 o5 z! `* j
6.11.2A Relaxation Instrument 1741 R# Q) f0 p$ A; k# m! G
6.11.3 Driven Torsion Pendulum Devices 174) i2 U7 L5 M1 H  {, y
6.11.4 Commercial Viscoelastic Instrumentation 178
2 M8 t/ d9 J7 x9 e2 A6.11.5 Instruments for a Wide Range of Time and Frequency 1791 F$ T4 B4 P8 H0 O9 F
6.11.6 Fluctuation–Dissipation Relation 182: G6 I3 l4 L) J3 C9 |, D  S5 W
6.11.7 Mapping Properties by Indentation 1830 ~- [, J2 t% j( c! f4 j
6.12 Wave Methods 184
$ N* w5 Y+ [' A, X5 [+ l/ Y6.13 Summary 188
+ N2 y% }+ ~( |. U, {6.14 Examples 188  ^6 Z0 d7 e& `  u# N+ K
6.15 Problems 200
- b# U; t( x0 Q. q& GBibliography 201
- D5 e! o9 I+ B, Z$ U: ^
# e2 a, i7 d) B% Y
, y- l: S2 l1 r7 I0 C- j
8 O1 u/ d6 G' ]+ _- T( ^( W7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207+ `# I5 x- \( [6 @% _+ y( t! E- k& a
7.1 Introduction 207/ b% s  k9 A/ @2 l  A
7.1.1 Rationale 207
  [( l! T- r4 W7.1.2 Overview: Some Common Materials 207
+ v8 c  A4 l; O' s7.2 Polymers 208
" k4 B+ o0 P6 Y2 M( h, r7.2.1 Shear and Extension in Amorphous Polymers 208( t; a& o# t; c1 L$ j
7.2.2 Bulk Relaxation in Amorphous Polymers 212# K4 G; \6 q1 K2 Z+ l
7.2.3 Crystalline Polymers 213
( U+ c, A6 @6 J+ F: m2 ^7.2.4 Aging and other Relaxations 214
  |0 z8 E3 B0 `0 L  B: Y0 Y* D7.2.5 Piezoelectric Polymers 214
$ }$ p# d* j9 c% A9 k6 H5 [7.2.6 Asphalt 214, b* h% z" Y( ?) ]  u
7.3 Metals 215
7 L( z; B! _: M8 p9 P+ ?; ?7.3.1 Linear Regime of Metals 215' E/ A& I2 X  a! b  M. B- k
7.3.2 Nonlinear Regime of Metals 217
$ i& D' }4 q: p1 K' j7.3.3 High-Damping Metals and Alloys 219
% W) ~) m7 V6 U+ u$ C7.3.4 Creep-Resistant Alloys 2246 G, W" m4 k1 p9 s
7.3.5 Semiconductors and Amorphous Elements 225
$ r$ Z! {6 U6 A1 K. F  ?# d( s6 U7.3.6 Semiconductors and Acoustic Amplification 226# m% \% r1 k$ \
7.3.7 Nanoscale Properties 226
& B8 d5 y; f5 B! p7.4 Ceramics 227
) ]& U6 w4 p8 V7.4.1 Rocks 227! k# R, z2 p! p  v5 {+ W; ^
7.4.2 Concrete 2299 o. v3 }- @( `! N
7.4.3 Inorganic Glassy Materials 231
" B! w7 i% g, R* k- O, e. d/ T7 t7.4.4 Ice 231: @4 M. T$ S, x( w, D
7.4.5 Piezoelectric Ceramics 232
$ f& K3 J: C- q7 o7.5 Biological Composite Materials 233) m+ h+ F' I7 I1 U+ H, P! `
7.5.1 Constitutive Equations 234& \# {$ P$ e! S
7.5.2 Hard Tissue: Bone 234
9 [+ k# C! r6 A' {7.5.3 Collagen, Elastin, Proteoglycans 236- ^9 ^$ n! X! p  f/ Z
7.5.4 Ligament and Tendon 237
$ k8 S* w* Z1 g7 q) d1 f7.5.5 Muscle 240: U; K- E* j9 E& ?6 z5 X
7.5.6 Fat 243
: N3 |0 u2 u! t3 P7 ]+ q: l7.5.7 Brain 2432 d& {( i6 W; d6 y; J. w; O  L
7.5.8 Vocal Folds 2441 p: E% `% o: f- _, j
7.5.9 Cartilage and Joints 2442 M  M, G" v8 A" h# x4 V
7.5.10 Kidney and Liver 246
, c# ^& A" d6 M# N4 d7 D, k& v3 l: u+ R7.5.11 Uterus and Cervix 246
$ a4 d1 X6 t; N# G7 K7.5.12 Arteries 2478 y" P& N! t; ^8 E% Y/ R- |
7.5.13 Lung 248' W( N/ {  [! n2 s- T. I
7.5.14 The Ear 2484 D) ^/ G3 Z4 @% k3 \
7.5.15 The Eye 2495 o1 {$ C, c' k
7.5.16 Tissue Comparison 251/ R$ n; ]6 \0 ?) Y7 w4 K
7.5.17 Plant Seeds 252
: c% \+ I! e' r+ ]7.5.18 Wood 2529 F$ v3 j1 H- b" o
7.5.19 Soft Plant Tissue: Apple, Potato 253
2 g5 y1 J- B, x* @! x8 B7 l4 g- ]7.6 Common Aspects 253' u8 v& X# w% j
7.6.1 Temperature Dependence 2536 j& B+ I4 h7 n
7.6.2 High-Temperature Background 254/ g  Y" ^& E9 W. G3 e
7.6.3 Negative Damping and Acoustic Emission 255
1 f, R- p! o9 w( Z' i' G7.7 Summary 255
5 J8 V& e  \; A1 }1 ^7.8 Examples 255; \1 ^- I9 o; `; g/ m2 E% r
7.9 Problems 256
' L: I. p' I/ z+ h" ?% ~Bibliography 257
2 G5 A9 z. b2 K% n( s" J4 v6 c/ `" Q9 b) E2 E% e+ w( y3 h

4 u4 S* b. ~( G7 u
& {- V! ~3 z  t' Q- T& L# G' k8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
+ k2 o5 R2 W# l4 i8.1 Introduction 2717 F! i3 y) h. F2 c) ]) @5 q
8.1.1 Rationale 271
9 O7 [. A, l6 `4 `+ ?: Z: G8.1.2 Survey of Viscoelastic Mechanisms 271
& g( u% u; {8 L3 p8.1.3 Coupled Fields 2735 R* L( U" T* `! O
8.2 Thermoelastic Relaxation 274
3 V7 r, ]! S1 D3 l' s8.2.1 Thermoelasticity in One Dimension 274
" ~+ ]- b$ n4 |) m4 _3 [8.2.2 Thermoelasticity in Three Dimensions 275% n. z, K" U3 z4 N! r
8.2.3 Thermoelastic Relaxation Kinetics 2766 Q; P, \  o& ]6 ^; L1 k
8.2.4 Heterogeneity and Thermoelastic Damping 278! d" n% s  h" y; s' p
8.2.5 Material Properties and Thermoelastic Damping 280
% h2 S& X. f5 @4 ?' y* V8.3 Relaxation by Stress-Induced Fluid Motion 2804 x+ S, Z/ K: r5 B1 [! J
8.3.1 Fluid Motion in One Dimension 280
% Y' R0 M' k* J4 M" {6 j8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
$ Y+ Z8 j( E/ c8.4 Relaxation by Molecular Rearrangement 286( |7 D2 v; `) V. c4 o* A; s
8.4.1 Glassy Region 286
; H" O/ z% w) F9 H9 Q8.4.2 Transition Region 287: J% v' A$ n! S
8.4.3 Rubbery Behavior 289
2 G8 N$ R$ ^+ \4 v6 z, Z8.4.4 Crystalline Polymers 291- Y& ]* T+ A9 g' ]  k
8.4.5 Biological Macromolecules 292, d4 F4 D! t  ?6 O
8.4.6 Polymers and Metals 292. D4 V( M& [0 q  l. ?  j
8.5 Relaxation by Interface Motion 292
2 c) g: q0 o* C! @2 T5 f8 \0 G) ?7 |5 ~8.5.1 Grain Boundary Slip in Metals 2922 t6 n1 y9 k* W- J' m8 e2 \
8.5.2 Interface Motion in Composites 294
" z* F) d1 k3 b6 Z" ?( I8.5.3 Structural Interface Motion 294, z" G0 ?9 t# R6 ?4 w
8.6 Relaxation Processes in Crystalline Materials 294
- P* P* \& _1 b+ j7 @1 `8.6.1 Snoek Relaxation: Interstitial Atoms 294- a- p/ w; z1 \; ]2 ^* \
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298" \9 l- t3 P: J1 z% A
8.6.3 Gorsky Relaxation 299
! h9 i+ m  @1 }  X% r: `# h8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300- M% f+ C$ Y- h
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
1 H) f% b( G. D8 m8.6.6 Relaxation Due to Phase Transformations 305  G  o0 p. b! ]% k4 c* x& s3 U
8.6.7 High-Temperature Background 314# q8 f: b( }  U1 n
8.6.8 Nonremovable Relaxations 315+ f7 S/ a, E1 E( ~$ |; Z5 O# `
8.6.9 Damping Due to Wave Scattering 316" M8 G3 K: `2 [1 }
8.7 Magnetic and Piezoelectric Materials 3164 y) ?. F$ q3 H% E- }
8.7.1 Relaxation in Magnetic Media 316
3 x$ h2 N3 n9 D3 x- M' P' ?# b  x; h( J8.7.2 Relaxation in Piezoelectric Materials 318
( B) L' [% e0 D& D8.8 Nonexponential Relaxation 322
3 R9 o  S: ]2 u8 C+ L& o$ L3 F8.9 Concepts for Material Design 3238 F8 v1 g: j7 z; w0 k' V
8.9.1 Multiple Causes: Deformation Mechanism Maps 323
) U# K/ n8 {) `4 ~8.9.2 Damping Mechanisms in High-Loss Alloys 3263 A7 n* n  \2 e; @: A& p; D  D- s
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
; ?( @5 K" c7 {! k# e/ I; k6 ^( Y8.10 Relaxation at Very Long Times 327# _6 p8 U" k8 k$ O; V8 T
8.11 Summary 327
  F; N0 X" Z  t/ ]8.12 Examples 328! O$ @/ j* s- ~$ d8 h  w1 @
8.13 Problems and Questions 332
6 r2 X% a& n: T4 W/ H1 gBibliography 332* @1 e) Q8 P  O2 y- n  c

' _3 H% z6 ?+ v3 c' K
. }0 _9 x) }1 ^  G1 B! y. l
' G8 a/ }4 V- u$ W' H1 V" P9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
5 n7 S% U5 W6 {6 V: {; W# h8 h9.1 Introduction 341
3 \- S3 I9 K" n  F9.2 Composite Structures and Properties 341% K( V2 j, d' @6 ^# N0 c
9.2.1 Ideal Structures 341
' M4 t. }" m0 k, f9.2.2 Anisotropy due to Structure 342
' g5 J( t8 c+ Y# b' Z3 R( ?9.3 Prediction of Elastic and Viscoelastic Properties 3444 w- J, c0 i; h* g( {" C
9.3.1 Basic Structures: Correspondence Solutions 3440 |, Y0 u: g* E& n7 u$ F
9.3.2 Voigt Composite 345
; Y' I/ T/ \  Z9 X9.3.3 Reuss Composite 345
$ Z/ [' }9 v: ^1 `9.3.4 Hashin–Shtrikman Composite 346+ p9 w! N# V$ k0 F  z
9.3.5 Spherical Particulate Inclusions 347$ v4 R3 ]! A6 p" n$ K
9.3.6 Fiber Inclusions 349
9 e9 H9 o9 O8 j1 B# i' g* f) X8 P9 X9.3.7 Platelet Inclusions 3499 T& a, j4 B; G- m
9.3.8 Stiffness-Loss Maps 350
( u) _8 m$ @0 b# j2 t9.4 Bounds on the Viscoelastic Properties 353
% J( o" _6 h2 \% x4 l3 G: x9.5 Extremal Composites 354
* i/ w3 m' V; b% R2 k$ o7 J9 t( y# D9.6 Biological Composite Materials 3562 A+ e$ W. g7 R) }
9.7 Poisson’s Ratio of Viscoelastic Composites 357/ x& x* R( l% N% w9 B# U
9.8 Particulate and Fibrous Composite Materials 358/ ?! E, r) N* C0 ?4 ?9 g* g+ g
9.8.1 Structure 358
# N7 y- z+ ^% s0 l3 T9.8.2 Particulate Polymer Matrix Composites 359
6 D) F0 G7 a2 p! t9.8.3 Fibrous Polymer Matrix Composites 361
& f. ?1 ~/ V3 x) O+ m) {+ W8 Q8 R9.8.4 Metal–Matrix Composites 362
) `$ W( S: D9 _9.9 Cellular Solids 363& _1 B( q9 ]% H% ^4 L% s9 v6 y. z
9.10 Piezoelectric Composites 366/ n5 R, I  X: _- I
9.11 Dispersion of Waves in Composites 366$ c; E( m6 S; x+ _4 a( }% b
9.12 Summary 367; C( J+ E8 u. }: x3 [9 s% K! [
9.13 Examples 367
' y% E# m# m7 R& f( C0 Q8 {9.14 Problems 370
, p2 c8 g2 e! \' z4 }3 x5 x3 bBibliography 370
5 y! ?. w1 U* d- X2 B
+ p# z5 V2 o2 {; h3 i' L1 t
$ D% c" D4 K7 z2 w' F: b% B& |
2 q; y/ t4 _' c* p: z& t10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 3774 u5 G: a/ o0 V9 @
10.1 Introduction 3775 j+ J; J) ~$ }/ Z0 v
10.2 A Viscoelastic Earplug: Use of Recovery 3777 b' `" o0 {) M+ g
10.3 Creep and Relaxation of Materials and Structures 378/ G1 F) E; T. s+ t- P
10.3.1 Concrete 3782 ~7 T3 r' e3 v+ e, `, c4 ?
10.3.2 Wood 378
2 h" C. P+ a+ P10.3.3 Power Lines 379
4 N$ b4 g6 _* G# Y0 ^, x) P10.3.4 Glass Sag: Flowing Window Panes 380$ f5 j" e9 y! ^5 F
10.3.5 Indentation: Road Rutting 380; g1 c2 u! E$ n
10.3.6 Leather 381
7 {. ]+ B8 ~! [, E. w) v10.3.7 Creep-Resistant Alloys and Turbine Blades 381
9 z) h7 K9 O' c10.3.8 Loosening of Bolts and Screws 382
9 ]( E+ X9 @# z5 G( d10.3.9 Computer Disk Drive: Case Study of Relaxation 3846 @; l5 \5 B' [8 P0 z- @
10.3.10 Earth, Rock, and Ice 385
$ G( W; i0 U$ @7 ?+ g8 F. y: z' M10.3.11 Solder 386
) X1 C1 p: T& @/ }' }" K7 D8 d10.3.12 Filamentsi nL ight Bulbs and Other Devices 3879 }( ~+ r; G* `7 x
10.3.13Tires: Flat-Spotting and Swelling 3887 |* `7 O' i: n5 Q: P- z
10.3.14Cushionsfor Seats and Wheelchairs 388
: ?4 v' y0 l( \" X/ G% @10.3.15 Artificial Joints 389" I- B/ D: e( W/ ~8 M
10.3.16 Dental Fillings 389
* m0 I, P. ?3 d5 A; e# F& b10.3.17 Food Products 389
4 I( R% k% k- M, J10.3.18 Seals and Gaskets 390! L/ {6 @5 {" E9 _+ K
10.3.19 Relaxationi nM usical Instrument Strings 390
  I* b. S# j+ B. x( }5 O10.3.20 Winding of Tape 391
+ N; F- w6 R9 E. V  @$ c10.4 Creep and Recovery in Human Tissue 391
2 T, L" y+ g) Y" _10.4.1 Spinal Discs: Height Change 391: C' B- o: F* g% ^3 D7 ]
10.4.2 The Nose 392
: d- y9 l. i& e8 l; }10.4.3 Skin 392" E7 N1 d# }+ a3 Y, E. x' v
10.4.4 The Head 393+ w) ?9 L7 H5 Y  H+ p
10.5 Creep Damage and Creep Rupture 394, V( H5 v  N: {% r9 o" J
10.5.1 Vajont Slide 3940 V7 B- h/ [% l& Q2 C
10.5.2 Collapse of a Tunnel Segment 394% ?# I- X( n- H6 b8 S$ v# B
10.6 Vibration Control and Waves 3942 f+ C1 }$ U8 F: G  V
10.6.1 Analysis of Vibration Transmission 394
1 f6 W4 k, b$ x' b! Y4 h" u) l" G10.6.2 Resonant (Tuned) Damping 397# M% O9 A$ C2 r$ v0 e+ ?
10.6.3 Rotating Equipment Vibration 397
) F7 @/ J4 U2 C5 |3 H10.6.4 Large Structure Vibration: Bridges and Buildings 3984 L! L' h6 h8 p/ b" F# V9 P
10.6.5 Damping Layers for Plate and Beam Vibration 399
# ?) m% l8 p. `7 ]2 L6 R- j% T- U- I6 N10.6.6 Structural Damping Materials 4009 y: `2 ~2 d7 j7 t
10.6.7 Piezoelectric Transducers 402. t1 ?. D% \; y- c' t  j$ I: Y- t
10.6.8 Aircraft Noise and Vibration 402& L) _$ H! _% M. {
10.6.9 Solid Fuel Rocket Vibration 404
& Y7 q- P6 j- R6 N& X' g  D" {10.6.10 Sports Equipment Vibration 404
+ L1 Y8 E7 I% M# [10.6.11 Seat Cushions and Automobiles: Protection of People 404
4 P6 z* S+ T5 ~10.6.12 Vibrationi n ScientificI nstruments 406; ~% f; I2 o. N
10.6.13 Waves 4065 T3 s4 W' d# V2 D3 P1 |9 f
10.7 “Smart” Materials and Structures 407
1 U0 p7 v9 t* M10.7.1 “Smart” Materials 4078 u! Y' l/ L/ Q1 L7 d
10.7.2 Shape Memory Materials 408
4 w+ d- F% J( G. Z6 c: T10.7.3 Self-Healing Materials 409
1 R, c( h6 k  y4 p6 O' p- x' [8 d10.7.4 Piezoelectric Solid Damping 409# |: s. N" m" Z7 e, Z6 A
10.7.5 Active Vibration Control: “Smart” Structures 4099 b: }3 c* l( f5 M4 ]
10.8 Rolling Friction 409
; Q: H# f; p4 V, ]& Y: i2 N10.8.1 Rolling Analysis 410
1 I5 v4 s: @) d. Y& G, V10.8.2 Rolling of Tires 411: U" A' G9 j: C8 T* k
10.9 Uses of Low-Loss Materials 412
' Z2 c1 l6 {. v0 w8 o* A10.9.1 Timepieces 412! S9 w& r# T& i# i
10.9.2 Frequency Stabilization and Control 413; j1 w9 ^& v: ]3 X9 U* g
10.9.3 Gravitational Measurements 413% u2 L+ |! j0 A6 @* Y$ P7 g; @
10.9.4 Nanoscale Resonators 414& [( H* {5 p4 _" I* @( ~; X$ ~
10.10 Impulses, Rebound, and Impact Absorption 414# E7 W: [( N8 m/ _
10.10.1 Rationale 414* N& h2 w# y' v& W1 T
10.10.2 Analysis 415* c0 i' M' ?, k. T# z3 V
10.10.3 Bumpers and Pads 4189 Y! V- J$ p5 C: L, v9 @% [0 Z
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
0 e% j1 O1 r' z- X* E10.10.5 Toughness of Materials 419
/ L. j6 V' W% ?5 t& a" ?9 p/ d! [10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
+ w0 W$ Y2 I  }: |! m10.11Rebound of a Ball 421: A2 e( e  o3 B/ j1 f6 e
10.11.1 Analysis 4213 Z& {5 L5 g0 G: n& l1 v
10.11.2 Applications in Sports 422
- M. L8 y2 z% S5 ?5 a7 E10.12 Applications of Soft Materials 424
1 u$ C- A& v, a5 p8 {7 t10.12.1 Viscoelastic Gels in Surgery 424* j% Y$ ?' W" ~( _
10.12.2 Hand Strength Exerciser 424  ^/ G- ~( w6 p' \! H4 u4 ~
10.12.3 Viscoelastic Toys 4243 e7 I8 U- V, r! n- ?& `0 Y
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 4250 ^0 @# N; i4 k% J( S* M
10.13 Applications Involving Thermoviscoelasticity 425( ?3 g2 }4 j: ]  V2 B" G& ~
10.14 Satellite Dynamics and Stability 426
7 O: n% ^* i+ `$ U10.15 Summary 4288 @. l" `+ z! _! T8 u7 X9 N
10.16 Examples 429
; i2 o7 h) Y0 K% W" Q10.17 Problems 431
: U  h% n: ~; D& W9 [Bibliography 431
' w; z; ]! Z* l* `* B. K. a& _4 S; x! C& `: n2 l% Y, k

7 y& l! i/ M2 E5 ]
" V: c4 a! r7 J5 `1 _A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4410 W& \  }/ I, w$ ~# {9 `7 P3 e3 O
A.1 Mathematical Preliminaries 441
  ]+ b. K% y! Q6 _" @& @A.1.1 Introduction 441
- x! X% W* @& E" s- HA.1.2 Functionals and Distributions 4417 u* q  g" W1 f  k7 j& n1 f
A.1.3 Heaviside Unit Step Function 442
/ m( S5 }6 M7 O- _9 Q1 xA.1.4 Dirac Delta 442
6 l5 K; @0 h2 q7 m& `A.1.5 Doublet 4437 l4 R# I& L# W2 Z
A.1.6 Gamma Function 445: ^: ]+ d- d# f6 |
A.1.7 Liebnitz Rule 445
+ l( x' b9 ^! ?3 n& VA.2 Transforms 445
* D5 z1 k# Q/ _7 H. w8 FA.2.1 Laplace Transform 446
. G" u6 P* Z3 q4 _' B0 l! zA.2.2 Fourier Transform 446- I6 G6 s- L( z( y9 q! ]9 Q
A.2.3 Hartley Transform 4472 y; ?4 r$ q( ^
A.2.4 Hilbert Transform 447, j$ o. |* V* P8 R4 C
A.3 Laplace Transform Properties 448
5 I3 h4 H* H4 `* l3 _" @- FA.4 Convolutions 449
5 r7 O& I' {/ W% F9 o$ vA.5 Interrelations in Elasticity Theory 4519 x9 N  P, ]' z4 w
A.6 Other Works on Viscoelasticity 451
# @- c. h& n/ i1 X( W7 ZBibliography 452
2 C' Q) v, P3 j9 s$ a
; h6 h3 w/ M! h* h4 m% v1 q, ?* p# e: X; z) |9 f
B: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455, C1 d4 F2 x3 j! O  a( z5 G$ g& G
B.1 Principal Symbols 455
* ^- Z. X" a4 c5 m/ I* R6 pIndex 457# ^+ E$ V: T6 D& o% t; s

; G2 P5 I8 g( X, e: `( Z( c4 q% e- p2 R; F2 v; r6 d
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-11-11 21:39 , Processed in 0.063891 second(s), 23 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表