机械必威体育网址

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 12774|回复: 33
打印 上一主题 下一主题

轴向受拉圆管的内外径变形研究(初步)

[复制链接]
跳转到指定楼层
1#
发表于 2013-7-14 10:46:41 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 逍遥处士 于 2013-7-14 12:07 编辑 # Q5 \0 M: o$ [) t# v; Y
1 _1 Y# t: F2 p  F6 d+ G3 t9 W- J
无事看贴时,发现一个很久以前的题目。说一个圆管,在受到轴向拉伸时,其内径是变大还是变小?' M7 |/ E. i2 Q- m( h7 B2 B& W" |' J
3 U2 |9 K* u' [* i
初想此事很容易,但细想,颇费思量。设圆管内径r1,外径r2,受轴向拉力,并且应力在截面上是均匀分布的,那么根据胡克定律,圆筒在轴向是伸长的。同时,根据材料的泊松比,即材料在一个方向受到拉力时,在另外两个方向会自己收缩。另外两个方向,无非是径向和环向,再加上轴向,刚好凑上空间的三个方向。
% J) k2 H8 O; }) _: e( r* J5 k- F  J, _9 i- u
这个破费思量,问题在哪里呢?如果是实心圆柱,问题就很简单了,半径r变小就对了。但是这里有三个参数,内径r1,外径r2,壁厚δ,就不太好一眼看出来。若以壁厚为准来判断,那么外径变小,内径变大,则壁厚变小,似乎可以说的过去;但总感觉内径变大,似难以令人信服;另外,如果外径变小,内径也变小,那么壁厚是变大还是变小呢?变小多少呢?
  J# J6 E1 t& A  {" j& ?& q% G4 [! P( _- Y; a0 R/ k
就我的理解,泊松效应反应的,可以说是材料的“每个微粒”的性质,也就是说,当在正向受拉力时,在另外两个侧向上,任意找两点连成一条线段(无论多么远,也无论多么近),那么这条线段都是符合泊松效应的。有人说,如果是一个圆呢?经过研究,圆也是符合的。为什么呢?因为圆可以视作正n多边形,那么每一条边都是一条线段,当n很大时,这个多边形和圆就几乎没有分别了。所以说圆也是符合泊松效应的,它不过是很多线段组成的一个特例。$ f7 S: p( m: }8 ]* @
& m! Z; v9 d4 g* \
那么就本例看来,有3个方面是符合泊松效应的。即内周长C1,外周长C2,壁厚δ,并且它们的应变都是相等的。& t4 }+ f' p5 p6 O! Q
1 |; \) L' i- u, O2 E
前面说过颇费思量,既然颇费思量,那就借助代数符号吧,将思维过程,固化到纸上,来帮助思维,于是列出式子来推算。
$ S; ]8 ^; C9 Q( w' l最后得出的结论是,无论轴向是拉是压,内外径变大还是缩小,变形前后,有一个数是始终不变的,那就是——内外径之比!
, C( G6 Q' W. i8 w; ~9 w4 R$ G( R9 R! w(纯粹是理论推导结果,推导的正确与否,与实际是否符合,还未可知,请不吝赐教!)
/ C+ F$ x6 T' o8 e: b4 Q7 w7 w7 {! T$ n. O! |0 C5 B, P

; T9 `: R% Z7 }9 }3 k
+ F- Y( ?' M: d如果拉伸的是内径φ60外径φ120的圆管,它可能的变形如下图,可以看出,外径缩小量,比内径缩小量要大:& T- w& |3 h; `" s: N! I8 G
" A7 t8 O9 O$ Y; X
$ u# ]/ }% K4 P
. @: p7 T5 O1 ^. V$ A% C. b% w& O
……式子推到一半时,软件崩溃了!算了,夜已深,回去休息吧。洗漱完毕,坐在床上,想到式子没推完,寻摸着,摸到一支笔!但却没找到纸!没奈何,扯到一张卫生纸凑合写起。这一写感觉还挺好,源源不断的,心想以后也不用买本儿了,就用它吧 ^_^
% f; y. o5 q- s/ m4 E
4 N$ o' a2 C& X& R9 t
" e9 O( ^9 D- m7 X7 A, F# f( ~
& P# I! G  E& `' I* x$ e: b星爷曾说过,“即使是一条底裤,一张卫生纸,都有它的用处”,……信哉斯言!
' F3 c8 X& M. \) ~( ^' F6 O0 J, H* C" V# q

) ~8 P6 B% C6 ^

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x

点评

忘了补充一点,前提是假设在弹性小变形范围内。  发表于 2013-7-14 14:53
特别感谢fmdd大侠推荐的smath免费软件,好使。http://en.smath.info/forum/yaf_postst1778_SMath-Studio-0-96-4868--30-May-2013.aspx,有中文的。  发表于 2013-7-14 11:46

评分

参与人数 5威望 +5 收起 理由
好方案 + 1 真正的做学问的方式,学习。
solo0352 + 1 草纸都用上了,不得不佩服楼主!
WUHANLIST + 1 问题描述清楚,显得很专业!
zerowing + 1 很深入
LIAOYAO + 1 好学

查看全部评分

本帖被以下淘专辑推荐:

  • · 基础|主题: 800, 订阅: 88
回复

使用道具 举报

2#
发表于 2013-7-14 11:14:33 | 只看该作者
本帖最后由 探索号QM 于 2013-7-14 11:16 编辑 ! c  C+ j9 l$ B: c, Z) o

4 g( h( o" E2 H换句话说,就是在轴向均布载荷作用下,垂直于轴线的截面上,任何一点的径向应变应该都是相同的?; v0 T; ~0 m+ }2 E
轴向载荷的形式有没有设定上的不同?! F/ L4 T6 Z. ^# P* }

点评

是的。肉眼无法观察出变化。本帖仅仅研究一种简单情况。  发表于 2013-7-14 11:47
大多数金属材料确实如此。但使用橡胶材料,可以看得出来。  发表于 2013-7-14 11:45
材料在弹性变形范围内则很难看出有管壁厚度变化,更不会看到整体管径缩小。若已有管径变化则已进入塑性变形区。  发表于 2013-7-14 11:40
材料在弹性变形范围内,厚度尺寸在一定范围内,个人觉得应该可以这么理解。  发表于 2013-7-14 11:35
不可能是均匀的,不谈制造误差或均质体,两力交汇的中间区域是最早变形的。  发表于 2013-7-14 11:32
不知是否有未考虑到的因素。  发表于 2013-7-14 11:29
那么比例相同的结论就应该成立。  发表于 2013-7-14 11:26
我觉得应该是这样。假设轴向载荷引起的轴向应力是均匀的。  发表于 2013-7-14 11:20
回复 支持 反对

使用道具 举报

3#
发表于 2013-7-14 11:18:02 | 只看该作者
管和棒的变形规律应该类似,始由厚度变化,管壁先变薄往厚度中间移动,在管壁被拉薄其拉强增高,当大于圆管整体拉强后,管整开始出现内缩现象,如此反复互动,直到管整某处产生裂纹,随后迅速扩展成裂缝,再继续拉则最终拉断圆管。
回复 支持 反对

使用道具 举报

4#
发表于 2013-7-14 11:28:33 | 只看该作者
大侠的钻研精神值得佩服。
/ F) p4 i. Q. S: [5 r+ ?" W半夜三更不睡觉,老婆没唠叨你?

点评

还不到12点。^_^  发表于 2013-7-14 11:29
回复 支持 反对

使用道具 举报

5#
发表于 2013-7-14 11:30:17 | 只看该作者
新人不懂
回复 支持 反对

使用道具 举报

6#
发表于 2013-7-14 14:45:27 | 只看该作者
看看这个。
2 m' U6 }5 G7 u
7 y9 c9 H) e: t: K5 ]) k* b

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x

点评

英文意思是 小变形 和 大变形  发表于 2013-8-2 18:31
哥们,强大  发表于 2013-7-16 12:43
应该是,不过原文没这么题。只是说一个是小变形时,一个是大变形时。我的理解是,因为这是个普式,也就是适合各种材料的,所以没区分弹性还是塑性。  发表于 2013-7-14 15:16
昨晚熬夜到2点,早晨很早爬起来做的PPT,下午做完演讲回来睡了一会儿。结果现在不困了。。。悲剧。  发表于 2013-7-14 15:14
将及寅时,仍未安歇?  发表于 2013-7-14 14:54
这个是两个公式,一个是弹性的,一个是塑性的好像?  发表于 2013-7-14 14:52
回复 支持 反对

使用道具 举报

7#
发表于 2013-7-14 15:12:56 | 只看该作者
于是有以下推论。
; y* p/ T' V8 `1 ]" d( B* }  h
" S( U: k! o) F* q' l7 x那么很显然,作为壁厚的t的变量为0。也就是说,当拉伸的时候,外径和内径同时减小,但壁厚不变。
+ ]7 z8 l: B) ^  s& a$ b1 v3 L于是作了个简单的有限元。" e8 d- @+ G! s: h! p7 _! L
2 I' F; Z0 u+ r5 M6 {  i6 b
从图里能看到这个变化趋势。图为拉伸后的合位移向量图。
8 |7 m  W/ |8 R% S. D

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x

点评

哈。感谢逍兄关心。没事。讨论讨论吧。正好,我也得国内一个电话。呵呵。  发表于 2013-7-14 15:27
在有限元上有操演了几次,也一直满足在这个变化趋势内。因此,推测,对于管类零件,纯拉伸时,无论在弹性还是塑性范围内,实际上只是在不断改变其中径尺寸,但是壁厚上没有什么变化。  发表于 2013-7-14 15:26
我不多说了。兄弟赶快休息吧。明天再聊!  发表于 2013-7-14 15:25
补充一句,这是在弹性变形下的情况  发表于 2013-7-14 15:20

评分

参与人数 2威望 +2 收起 理由
solo0352 + 1 你的精力真是无限大
Michael0576 + 1 问题描述清楚,显得很专业!

查看全部评分

回复 支持 反对

使用道具 举报

8#
发表于 2013-7-14 15:30:48 | 只看该作者
这张是拉伸力发达1000倍以后的,实际上已经发生塑性变形。
* y; B! W7 O4 P. f+ a1 I可以看下端面的情况。
* X, _" o( {0 M! ]* c' c0 g! a9 D四个圆表示变化前后的圆环面位置。从图上看,在变形量发大1400倍的情况下,壁厚几乎不变。, e2 E1 t4 Q2 _, Q) |2 R3 d

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x

点评

恩,不玩太深,用这个基本够用了。  发表于 2013-7-16 02:32
SW是计算的最快的,普通精度应用足够了  发表于 2013-7-15 16:20
SW的有限元分析插件,比较适合设计的时候随设计随计算。逍兄不妨试试。  发表于 2013-7-15 12:44
软件的内置材料库。泊松比什么的都是已定义的。特殊情况我才另外添加新材料,设置泊松比,强度等数据。这个的材料是4143  发表于 2013-7-15 12:42
翼老弟是否曾设置泊松比?  发表于 2013-7-15 12:39
恩,逍兄也注意休息。小弟这里只是提供一种思路和分析出来的趋势。具体的,我心里也没啥谱。逍兄可以参考着研究研究。  发表于 2013-7-14 15:44
我先研究研究,暂时不发言了。兄弟明早还要上班。  发表于 2013-7-14 15:38
回复 支持 反对

使用道具 举报

9#
发表于 2013-7-14 16:05:03 | 只看该作者
都是高手啊
回复 支持 反对

使用道具 举报

10#
 楼主| 发表于 2013-7-15 08:26:21 | 只看该作者
本帖最后由 逍遥处士 于 2013-7-15 09:12 编辑 / q  ?) {9 R- c/ O* D* f7 Q$ Y" a* h! R
zerowing 发表于 2013-7-14 15:30
* i5 z5 |3 z1 t' {% k8 f这张是拉伸力发达1000倍以后的,实际上已经发生塑性变形。! e% C' b9 G9 Y) P' d
可以看下端面的情况。
2 Z& c5 I3 A9 G- W& {1 S5 O: R四个圆表示变化前后的圆 ...

/ L. \. B: u) e6 e; O/ ^壁厚没变化?不合理啊?# {7 v; Y% ~% A0 Y
能否在未变形的截面上标记两个点,测量它们的距离,变形后再测量一次?- s3 E  a- [9 D  B2 D+ u. f/ Z+ L

点评

其实,我是这样理解。不变化,应该不可能。应该说变化量极小,以至于在拉断之前,这个变化量可能都是纳米级别的。拉断了也就没法测了。毕竟现在的分析都是基于一种理论力学基础,天晓得是不是100%正确  发表于 2013-7-15 12:46
哈,我倒是很想,不过很难做。如果试出来了。一定相告  发表于 2013-7-15 09:50
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2024-12-18 22:56 , Processed in 0.057478 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表