机械必威体育网址

 找回密码
 注册会员

QQ登录

只需一步,快速开始

搜索
查看: 13775|回复: 30
打印 上一主题 下一主题

三坐标检测同心度问题

[复制链接]
跳转到指定楼层
1#
发表于 2013-7-29 08:35:57 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 无锡锡通 于 2013-7-29 08:59 编辑 0 s6 r+ H7 s) |% _0 n$ z+ G7 B
. w' n1 N9 z5 s, ]) Z
各位大侠你们好
0 I$ J/ m7 D+ R7 b8 T
: G% K7 c! U* P* q6 x* |     我们冲压出来的产品经过客户的三坐标检测同心度超差    我想请教下三坐标的检测方法
8 j1 l7 b9 Z& x( R$ i, X
; W8 M/ f7 \# J7 \! c1 @% _. V; T    我们用双顶尖+千分表(穿芯棒打跳动)     转动产品打同轴度   产品时0.03~0.04     这个时候同心度应该  /2   在0.02
( y9 z' u, h7 M) ?/ |# l" a% @/ z
; f  \3 h4 B' h0 l. P+ `    为什么用三坐标测量的时候就达到0.053呢  
5 }3 g4 |1 _8 S9 J8 G
# \1 E0 F  {% Y, P( x) r6 W; U   我想请教大侠   三座标测量的结果是  /2的 结论吗& x+ g: z: C7 }

' W3 Z/ b/ C9 ?/ b: R  再请教  双顶尖的测量值    与  三坐标的测量值  区别在什么地方
回复

使用道具 举报

2#
发表于 2013-7-29 09:00:18 | 只看该作者
本帖最后由 探索号QM 于 2013-7-29 09:03 编辑 & ?6 c9 F7 ^% i/ @+ Q+ V; \) D
$ l$ A, ?2 c3 V
打跳动?估计你说的圆跳动。如果把圆跳动值/2当作同轴(同心)度,那是有误解的。
回复 支持 反对

使用道具 举报

3#
 楼主| 发表于 2013-7-29 09:02:43 | 只看该作者
本帖最后由 无锡锡通 于 2013-7-29 09:09 编辑
* Q( U7 r3 T9 K
- _8 E" w) x: _& Y7 D+ F7 G双顶尖 打的是跳动
1 x' A8 X0 I! S" Z. B! x7 V : ?8 T! U: t  P/ l
为什么不能  当同轴度看呢
, S* F# A4 k: b7 d) n0 D2 ?6 w
# ~% Q7 {# X- \3 M同轴度 应该是 跳动度的 一半  这个观念不知道有多少人认同
回复 支持 反对

使用道具 举报

4#
发表于 2013-7-29 09:06:03 | 只看该作者
跳动相当于同轴度与圆度之综合。跳动包含同轴度,但不等于同轴度。
回复 支持 反对

使用道具 举报

5#
 楼主| 发表于 2013-7-29 09:10:46 | 只看该作者
探索号QM 发表于 2013-7-29 09:06
+ T2 N$ s  A, E跳动相当于同轴度与圆度之综合。跳动包含同轴度,但不等于同轴度。

( T! _3 T* W2 l% z) O6 i+ D8 f大侠 请教下
5 ?) o5 l( a1 g; q; k& b8 P8 {: A
8 j$ x! R4 F- q1 ~    跳动/2=同轴度  这个说法对吗?
+ n. V8 \3 R) {

点评

那个三座标使用的软件应该是按照相关标准来计算采集的测量数据的。  发表于 2013-7-29 09:30
简单讲,肯定不对。详细讲,要依靠标准。  发表于 2013-7-29 09:25
回复 支持 反对

使用道具 举报

6#
发表于 2013-7-29 09:43:49 | 只看该作者
“有多少人认同”这件事不敢苟同。你看三坐标的测量程序是怎么测的,测量方法与它相同就行。如果你的三坐标也是圆跳动的测量程序的话,那就可以了。感觉你对圆跳、同轴的概念这么不清,应该回头研究一下。$ j  p- S3 M3 F9 l& W1 @
再回来说你的三坐标,三坐标按测头分有两种,一种是旋转测头,一种是固定测头。旋转测头的精度不如固定侧头的。按测量方式分有扫描和多点的。扫描精度最高,多点根据测量点的数量不同,还原真实值不同。
回复 支持 反对

使用道具 举报

7#
发表于 2013-7-29 09:51:50 | 只看该作者
感觉楼主确实把两个概念搞混了;
回复 支持 反对

使用道具 举报

8#
发表于 2013-7-29 10:06:25 | 只看该作者
这样解释吧,任意一个圆上的任意三个点一定能确定一个唯一的圆心位置。但是任意圆上两点只能确定一条弦。因为你很难确保那个弦一定是直径弦,所以,你没有办法用这个方法确定圆心,更不可能确定同心度。
回复 支持 1 反对 0

使用道具 举报

9#
发表于 2013-7-29 10:59:24 | 只看该作者
依据  JB/T 7557-1994《同轴度误差检测》( B. N4 D) u$ d4 a+ [1 l" t. g
5. 5 顶尖法
% m: w% t8 W* p  h9 s本方法适用于轴类零件及盘套类零件 (加配带中心孔的心轴) 的同轴度误差测量。见图 6。! z2 P% d# x/ K& t5 Y9 w
测量步骤:
( }. ~, X$ M3 l7 j( D- a9 ^' qa. 将被测零件装卡在测量仪器的两顶尖上;5 k. S7 {/ l  b
b. 按选定的基准轴线体现方法确定基准轴线的位置;, h  U& o8 Y) z9 J. h
c. 测量实际被测要素各正截面轮廓的半径差值,计算轮廓中心点的坐标;
$ k) j; H7 A; @d. 根据基准轴线的位置及实际被测轴线上各点的测量值,确定被测要素的同轴度误差。+ X5 J5 T% f0 R. j2 V$ P/ X
% P8 ?0 w' i+ t0 [) O4 V% c0 K/ i

7 p0 G' [9 `3 |: e2 `9 U% V! ?- v1–分度拨盘; 2–指示器; 3–被测工件7 k: a3 m# ?! h+ b* H. S* T- O) C, M6 R+ }
* B* a- q& |* M" M1 \8 m
6 数据处理" Y6 S% c( E) k% c
       测量同轴度误差,须首先测量基准要素以确定基准轴线的位置,再测量被测要素各正截面轮廓上各测点的半径差值,计算确定各正截面轮廓的中心,进而按同轴度最小包容区域判别法确定同轴度误差值。3 U4 |! k+ j% u# E, q& \& h4 ?
6. 1 基准轴线的确定. U# @) ?9 U: w4 @; Y" J
在测得基准要素回转面上各测点的测值后,按选定方法的不同经计算可以基准要素的最小区域回转面轴线、最小二乘回转面轴线、最小外接回转面轴线或最大内接回转面轴线为基准轴线。" _8 y* g- W. z+ }" @
基准轴线的参数方程表示如式(1):$ Z1 |" l- E: z
x = X0 + pz
3 _0 M9 o6 r$ s3 t0 Jy = Y0 + qz     ----------------(1)
& _2 V! w5 ^$ l1 \式中:x、y、z——基准轴线上各点的坐标;
, C/ x0 [7 N4 D" Z% b  @          X0、Y0、p、q——基准轴线的方程系数。5 w) K% K" u. F- n% h; d
对基准轴线的近似确定方法见附录A (参考件)。
6 E) Y4 v8 y/ U: M0 D  X/ ?3 N
8 _4 B# P( {. b4 S) N) F6. 2 实际被测要素各正截面轮廓中心点坐标的确定
1 s) ]! A2 n2 \, a' k3 w' U在测得被测要素某一正截面轮廓上各测点半径差值Δri (i=1,2,…,n。n 为测点数) 后,可按不同的方法确定轮廓中心坐标。见图 10。
$ e1 r4 u) Q. M6. 2. 1 按最小区域法确定中心
4 z0 ?/ a. z1 _计算步骤:* r4 F) g6 \' e7 ~9 Z; E
a. 以测得的数据Δri 为初值,以测量中心o 为初始中心,找出Δri 中的最大、最小值Δrmax、Δrmin
0 C2 N& @! d* K- I4 X5 Q及其差值f1;$ z7 e% L% A5 \
b. 按一定优化方法移动中心o 至o1;( V- s2 w/ y/ x% D
c. 按式(2)计算移动中心后各点半径差值ΔRi;* E7 ~- S$ G8 N
    ΔRi = Δri – ecos αi ……………………………………(2)' }$ m, K! N4 a
式中:ΔRi——中心移动后的半径差值;$ `  n5 R1 e9 m+ s( [
           Δri ——中心移动前的半径差值;+ b$ r; J( t+ k0 Z+ y) R
           e ——中心移动量;
" C1 F) e6 B! L( }3 ^% `           αi ——测点径向线ri 与中心移动方向线oo1 之间的夹角。$ N6 x+ S5 P1 z% d0 k, \3 y
d. 找出移动中心坐标后ΔRi 中的最大、最小值ΔRmax 和ΔRmin,计算其差值f2;
9 G! |3 v) ]5 [6 p4 `1 \) Je. 将f1 与f2 相比较,令较小者为f1,中心为o,Δri=ΔRi;
& L& J% K6 ~! l. i4 ~' b1 [f. 反复进行步骤b~e,使f1 为最小;- [! D7 ~$ J8 c6 V* ~! q+ I
g. f1 为最小时的中心o1 即为最小包容区域中心o(MZ),其中心坐标值为X(MZ)、Y(MZ)。
7 D/ j5 I$ w$ {& ]注:步骤a 也可改为以测得值经计算得出的最小二乘圆心坐标o(LS)及各点半径差ΔRi 为初值,找出ΔRi 中的最大、最小值ΔRimax、ΔRimin 及其差值f1,并令Δri=ΔRi。/ Y7 P& M# p- ?, g5 ?" z; P
4 ~- t, o( {5 L7 `5 F0 j( p
- {2 X! H8 l& E. {+ A2 L
6. 2. 2 按最小二乘法确定中心6 i. s: W. p; g6 M. T" n
           按式(3)计算最小二乘圆心o(LS)
* D/ }8 U: C3 j& q' j3 Q        
8 M: C$ y, K& V$ \7 L4 O       式中:X(LS) ——最小二乘圆心的横坐标;
8 H! |2 S/ d# L, m! z. y# v1 t  K) ?                  Y(LS) ——最小二乘圆心的纵坐标;
* u3 D+ I8 Z+ }' P, h                  n ——测点数;+ O8 K7 h+ h' |) D
                  Δri ——测得各点的半径差值;/ F; ^& H+ J% f- r5 Q# V' @
                  θi ——各测点所处位置的角度。
- o8 ~6 o" }& \6 b
/ v' C2 V; [- H( |  o6 L/ N6. 2. 3 按最小外接圆法确定中心
- j% R) ^# ~; Y, M  ^* u3 Y          计算步骤与最小区域法基本相同,只需将 6.2.1 条中的f1 值取为Δrmax,f2 取为ΔRmax。比较f1 与 f2 时,取较小者为f1,反复计算使f1 为最小,最后即可确定最小外接圆中心o(mc)及其坐标X(mc)、Y(mc)。
& n2 u& J! I( r' [: c6. 2. 4 按最大内接圆法确定中心
7 i$ ~+ s' I  l- k- Q          计算步骤与最小区域法基本相同,只需将 6.2.1 条中的f1 值取为Δrmin,f2 取为ΔRmin。比较f2 与 f1 时,取较大者为f2,反复计算使f2 为最大,最后即可确定最大内切圆中心o(MI)及其坐标X(MI)、Y(MI)。
( ]5 Z- x& k- u' a* d6. 3 同轴度误差值的计算( S7 J" F: o2 Y7 L0 j) ]7 [
          a. 按式(4)计算实际被测轴线上各点到基准轴线的径向距离di(i=1,2,…,m。m 为被测实际轴线上的测量点数)。
! W: t# [; x- }/ ?          di = [(Xi-xi)^2+(Yi-yi)^2]^0.5 ……………………………………(4)0 m: R% K* T& T
          式中:Xi、Yi——被测实际轴线上各点的横坐标、纵坐标;. e4 l7 \" x, U5 x( T: b2 L& s
                     xi、yi——按一定方法确定的基准轴线上各相应点(zi =Zi 时)的坐标。
1 }5 a+ i, S: X" U9 X. q. |          b.  di 中的最大值的两倍 2dmax 即为同轴度误差值φf! t7 P' W4 T6 e- i; Q3 e
4 T$ {: p: a  t% E+ r3 B5 [
3 t8 z5 Q' ^( H; Y' W% Q+ M

- s4 i: `2 i1 S) E, ]9 E; i
. O) j5 J0 D, g' `3 }' X" @8 ?

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x

点评

学习大侠的认真、热心  发表于 2013-7-30 20:26
厉害 学习  发表于 2013-7-30 12:07
所以没有理由将圆跳动值/2来对应同轴度。  发表于 2013-7-29 11:08

评分

参与人数 3威望 +3 收起 理由
行中 + 1 热心助人,专业精湛!
zerowing + 1 专业,标准
探索号QM + 1 问题描述清楚,显得很专业!

查看全部评分

回复 支持 反对

使用道具 举报

10#
发表于 2013-7-29 11:10:12 | 只看该作者
无锡锡通 发表于 2013-7-29 09:10
( H2 K8 X& G2 z2 S) x; t大侠 请教下
7 D' m) n4 j! b9 _" K5 B6 t# Q  H# f4 Z, ]+ q, B
    跳动/2=同轴度  这个说法对吗?
$ ]* D1 Y9 P) u; F
不是这样的,你这个测的圆跳动(被测要素绕基准轴线回转一周时,由位置固定的指示器在给定方向上测得的最大与最小读数之差),测量前要确定实测截面与基准轴线。同心度是针对两个圆来讲的,不知道你们这个到底是检测同心度还是同轴度,同轴度又是另一个概念了。。。; V9 |1 Q6 X/ G- C, ]9 k
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

小黑屋|手机版|Archiver|机械必威体育网址 ( 京ICP备10217105号-1,京ICP证050210号,浙公网安备33038202004372号 )

GMT+8, 2025-1-11 12:22 , Processed in 0.078478 second(s), 25 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表