8 c, i8 [$ x* h& `: D
3 K3 H- E5 E, E) V4 E* a
! P& C! J; a( y2 w. Y- E
| & y$ l5 x4 C: r1 D% b
! O& J" L7 W6 j% `6 O | # |7 K: z& e: v6 c- i7 J1 U
高速、高效、高精是磨削的发展方向。美、日等少数发达国家已经实际应用的高速磨削的砂轮线速度达到了200~250m/s,实验室磨削速度最高已达500m/s。为了与国际先进水平接轨,国家高效磨削工程技术研究中心经过多年对磨削机理、磨床结构的研究,研制出我国第一台砂轮线速度达到150m/s的超高速平面磨削实验台。> > ! ~4 ^% X7 Q5 |
该超高速平面实验台砂轮线速度为150m/s,采用CBN磨料砂轮和电主轴,磨头功率最大为20kw,主轴的转速最高可达到12000转/分,采用在线动平衡技术平衡主轴和砂轮的不平衡量。实验台主体由床身、立柱、磨头和十字拖板等部件组成。垂直方向移动由立柱实现,横向和纵向移动由十字拖板实现。> ' j: P3 e) K/ V' J1 P7 _9 u" C
2003年上半年我中心在该实验台上开展了超高速磨削工艺实验和超高速磨床的动态特性实验,同时进行零部件和整机的动力学模型建立工作。为优化实验台结构,下一步开发实用的超高速平面磨床产品打下基础,做了大量的工作。
+ }! h3 L$ C6 U0 d# r2 e( J1、超高速磨削工艺实验 7 f2 t. f) }* E0 L" [+ N
磨削工艺参数的改变对工件表面质量和生产效率有较大的影响。广西大学等一些科研院所在普通磨削工艺方面做了大量的试验,但由于条件限制,无法进行超高速磨削实验。为了弄清超高速磨削工艺参数对工件表面、亚表面的影响程度,我们选用从低速到高速不同的砂轮线速度、磨削进给量和材料进行组合实验。分别对普通金属材料、硬质合金、不锈钢、工程陶瓷等不同的工件材料进行磨削实验,测量磨削力、工件表面质量以及噪声、振动等指标,寻找最佳的工艺参数和规律。
9 [2 i* U) l7 k/ S$ t& f8 w: ?* U7 j2、超高速磨床动态特性实验
# e! a& t; Z# x6 E4 ]超高速机床应具有高刚度、高抗振性,比传统机床动态性能高5~10倍,刚度高50%左右,通常不小于100N/0.001mm的数量级。所以有必要研究超高速磨床的动态特性,确定机床结构的振动对加工精度的影响,找出机床的薄弱环节,并从机床结构的动态特性方面,提出一些抑制及改造的措施。 . w' D0 ]6 U7 f! x4 r1 s! r. k
中心在超高速机床上进行了不同工况条件下的动态特性实验。切削条件下的实验与上面的工艺实验同时进行,主轴转速为1700转/分、9000转/分。实验得到机床动态性能的各项振动指标为各阶固有频率、各阶振型和阻尼,动刚度及幅频、相频特性。 X! [4 v* m! y
3、有限元分析 : X0 ]; H% m4 m/ R* N8 x& U5 ?6 [! Y
目前,对机床动态性能的研究主要有试验模态分析法和有限元法。今后的发展趋势是上述两种方法结合起来,利用试验模态分析结果检验补充和修正原始有限元动力学模型,利用修正后的有限元模型计算结构的动力特性的响应,进行结构的优化设计。
' f1 g8 l4 g2 j8 ^3 l首先分析单个零部件的结构(如床身、立柱、磨头和工作台)。在三维软件Pro/E中建立CAD模型,分别导入Ansys分析软件中,作模态分析,得出固有频率和振型。结合实验结果,找出薄弱零部件,并提出优化方案。
* Z. q+ G2 P2 s# I仅分析个别零部件,无法全面反映机床整机的性能,因为各零部件之间结合部对整机的动态性能影响很大。所以,有必要作包括结合部在内的整机动力学分析。近几年已有北京理工大学、东南大学、上海交通大学等少数研究机构用有限元法分析整机动态性能。他们采用的研究方法各不相同,特别体现在结合部的处理上,精度有高有低,难度有简有难。我们尝试了一种新的方法,在Pro/E中装配各零部件的CAD模型,做为导入专门的前后处理软件Hypermesh中划分网格,再导入Ansys中分析。该方法全部在商品化软件平台上进行, 它的优点:(1)CAD模型从Pro/E导入Hypermesh时,可以保证模型完全准确地导入,不需作任何修改;(2)结合部直接采用软件中现有单元,可以方便地调整参数。 ; H9 G' I9 Q/ I( w7 h6 x' A
目前,中心在超高速磨削实验台研究方面,已取得较大的进展,在此基础上,我们将进行超高速磨床的工程化研究和开发工作,为推进我国机床行业向高速高效高精化发展、缩短与国际水平的差距作出贡献。 |