机械必威体育网址

标题: 【特材知识】盐酸对Hastelloy B-3的腐蚀影响 [打印本页]

作者: 中德密封    时间: 2016-4-14 16:26
标题: 【特材知识】盐酸对Hastelloy B-3的腐蚀影响
【特材知识】盐酸对Hastelloy B-3的腐蚀影响
% P0 G" V5 m3 L) l% T# Q, v        盐酸属还原性强酸,大多金属或合金在盐酸介质中都会因活化腐蚀而溶解,工程耐盐酸腐蚀材料仅限于Ti、Zr、Ta、Nb、W以及镍基耐蚀合金。HastelloyB-3是目前耐还原性介质腐蚀最好的镍基耐蚀合金,已广泛应用于醋酸生产工艺及盐酸储存装置。通过不同浓度与温度盐酸中的浸泡腐蚀试验与电化学试验,研究浓度与温度对B-3合金腐蚀行为,了解B-3的材质性能。  ]! ?$ X8 |& P' q8 Q2 ~6 S2 O
        盐酸浓度对B-3腐蚀速率的影响
1 T" J1 W# T- D# ^2 x        图4.1为80℃下,HastelloyB-3在5%、15%、20%、30%、37%不同浓度盐酸中的腐蚀速率。# }* `$ v2 r, t0 S. G
[attach]383901[/attach]
7 Z4 L+ @( i- n; ]7 N        图4.1(a)为80℃,HastelloyB-3腐蚀速率随盐酸浓度的变化,随着盐酸浓度提高,腐蚀速率上升,浓度低于20%,上升缓慢;高于20%上升速度加快。由图4.1(b)为80℃,HastelloyB-3每个周期腐蚀速率随盐酸浓度的变化。同一盐酸浓度下,随着试验时间延长,腐蚀速率变化不大,表明腐蚀过程中,合金表面状态比较稳定。37%盐酸中HastelloyB-3腐蚀速率仍然低于0.55mm/a,表明在纯盐酸中具非常好的耐蚀性。7 \) s* j/ x7 E
        图4.2 是80℃中 Hastelloy B-3在5%、15%、20%、30%、37%不同盐酸浓度中浸泡144h后的微观腐蚀形貌。8 W' S* ~8 B8 Q2 }5 J( J
[attach]383902[/attach]
' D& r5 {9 N) U/ [3 x[attach]383903[/attach]6 ^) j& u$ z) {3 k$ f5 ?# |
[attach]383904[/attach]# Y+ `$ \/ G# }0 c# v0 F# ~! ]8 J
        5%HCl中晶界处、孪晶界处处有轻微的腐蚀痕迹,碳化物没有腐蚀;15%HCl中晶界和孪晶处有较轻的腐蚀痕迹,并且晶界处的碳化物明显脱落;20%HCl中可以看到明显的碳化物带,晶界和孪晶界有明显的腐蚀,并且碳化物脱落,形成明显的点蚀源头;30%HCl中晶内的碳化物明显脱落,发生明显点蚀现象;37%HCl中点蚀进一步扩展,点蚀的数量和尺寸明显增加。
& i$ |" Y* J6 l- W         碳化物带处容易形成元素的富集,造成能量的升高,腐蚀行为优先发生。同时由于碳化物为富钼相,碳化物的脱落造成周围钼元素的贫瘠,钝化膜进一步遭到破坏,从而使腐蚀进一步扩展。随着盐酸浓度的上升,晶界和碳化物带的腐蚀痕迹明显加深。随着盐酸浓度逐渐上升,腐蚀痕迹逐渐加深,点蚀程度逐渐加深。
- o4 y( X. R* f1 w# X        盐酸浓度对B-3电化学行为的影# ^9 i/ P3 s: m6 l+ o
        图4.3为室温下,Hastelloy B-3在5%、15%、20%、30%、37%HCl中的极化曲线。
' `3 _' a" a! d: w4 X[attach]383905[/attach]" g# K, u: ]( f% O1 }% O+ ~! L  L
        由图4.3可以看出,随着盐酸浓度逐渐升高,极化曲线整体下移,自腐蚀电位下降,过钝化电位下降,但钝化区长度与斜率变化不大,钝化电流密度也未显著增加,表明随着盐酸浓度升高,合金表面钝化膜的状态比较稳定。同时钝化区域电流密度逐渐增加,即在相同的钝化电位下,钝化电流密度逐渐增加,钝化膜稳定性逐渐下降。钝化膜稳定性下降,材料在盐酸中的腐蚀速率逐渐增加。 ) V$ i5 Z7 c  G; G6 k) c6 X
        图4.4为HastelloyB-3在室温下,不同浓度盐酸中电化学实验后的微观腐蚀形貌。2 X9 @, J7 p9 }: H
[attach]383906[/attach]( f8 S7 U/ k& U1 ~# F, s2 d
[attach]383907[/attach]$ s+ L# d' t0 [3 x3 m4 p
        由图4.4可以看出,位于晶界处的碳化物首先脱落形成点蚀的源头,并且随着电化学实验的进行,点蚀坑深度逐渐增大。在低浓度的盐酸中,材料有明显的点蚀坑,晶界和孪晶界并不明显;随着盐酸浓度升高,材料中有明显的点蚀坑,晶界和孪晶界也有明显被腐蚀的痕迹。
# j9 a( u  L& F5 A% |' ]+ u5 i        在盐酸环境中,材料碳化物和晶界容易形成元素的富集,造成能量的升高,在腐蚀过程中容易形成“大阴极小阳极”的现象,腐蚀容易在晶界处发生。碳化物为富钼相,碳化物的溶解造成周围区域钼元素的贫瘠,钝化膜稳定性进一步遭到破坏,从而使腐蚀进一步发展。
; }. \2 p; r3 L1 \        温度对B-3腐蚀速率的影响
+ w- h3 n# ?! `9 Y: i8 V. d. _        图4.5为15%HCl中,Hastelloy B-3在室温、40℃、60℃、80、98℃条件下的腐蚀速率。
2 S, s( P6 M9 `8 |[attach]383908[/attach]        5 w; G5 V0 s+ j+ l8 Y$ q8 a# {

7 H  h9 s3 {. O: K      图4.5(a)为腐蚀速率随温度变化曲线,当温度低于60℃时,腐蚀速率增加缓慢,当温度大于60℃时,腐蚀速率急剧增加。98℃下,15%HCl中,HastelloyB-3的腐蚀速率为0.31mm/a,具有一定的耐蚀性能。图4.5(b)为每个周期腐蚀速率的变化曲线,随着时间的延长,室温、40℃、60℃、80℃条件下,腐蚀速率基本不变;98℃条件下,腐蚀速率有小幅下降。
8 X% k% Y) X7 {, I( X& E        图4.6为15%HCl中,Hastelloy B-3 在室温、60℃、80℃、98℃不同温度浸泡144h 后的微观腐蚀形貌。
% T2 f% A4 S  q! X: }  f% m& j[attach]383909[/attach]; V$ t( _* H( b2 `. C
[attach]383910[/attach]
: j% e- S8 u1 [! t/ G& P& }       在室温条件下,晶界和孪晶界有轻微腐蚀痕迹,碳化物未被腐蚀;在60℃下,晶界和孪晶界有较轻的腐蚀痕迹,碳化物脱落,形成点蚀的源头;在80℃下,晶界和孪晶界有明显腐蚀痕迹,碳化物脱落,出现点蚀现象;在98℃下,晶界和孪晶界腐蚀痕迹进一步加深,碳化物大量脱落,出现严重点蚀。 # s$ {6 Y+ ^- u" F
        温度对B-3电化学行为的影响
2 U& C8 C+ r& P6 B        图4.7在15%HCl中,Hastelloy B-3在不同温度中的极化曲线。
  u% J& w- g& H8 X* T: \" [[attach]383911[/attach]
, }" I2 v, R3 Q# |9 Y4 A- b        随着温度上升,合金的自腐蚀电位逐渐升高,过钝化电位下降,钝化区区域变短,试样很容易进入过钝化区,形成过钝化腐蚀;钝化区曲线斜率减小,电位变化对电流影响增大,钝化膜稳定性减弱。! D0 i, G' e( @1 d% h, p* E
        图4.8为不同温度条件下,HastelloyB-3在15%HCl中的微观腐蚀形貌。& T( `* ], w  f' o
[attach]383912[/attach]
6 Y2 o7 f' o& x  J1 b. A, Q6 J[attach]383913[/attach]$ Z- c6 u" B4 c  j' J
        图4.8可以看出,经过电化学实验,材料中的析出物脱落,形成了点蚀的源头。在室温条件下,晶界、孪晶界和碳化物明显腐蚀。随着温度上升,晶界和孪晶界腐蚀痕迹明显加深,点蚀坑数量和尺寸明显增加。
* ]" y# p; w' l5 R. s        HastelloyB-3试验的总结8 f' T0 c" T# Z3 ^- S/ L
        实验结果可以看出,盐酸浓度和溶液温度对HastelloyB-3腐蚀速率和极化曲线的影响有相似的地方,其中包括: : f# I) `" e/ b% z  ?! h$ r
        ①盐酸浓度升高或者温度上升,材料的腐蚀速率增加; * g& c8 g% I* x  W1 j2 {& ~; o/ i
        ②盐酸浓度升高或者温度上升,钝化区域变窄,钝化区曲线斜率变小;
" G" x8 S5 e2 `) c        ③盐酸浓度升高或者温度上升,过钝化电位下降;
# e6 w; o  R7 Q. f4 ]' y" [        但两者对极化曲线的影响是相反的,主要区别如下:
) J( x- L2 o  [3 J3 d        ①盐酸浓度升高,自腐蚀电位下降; ; a' y1 N: L! n- y
        ②溶液温度升高,自腐蚀电位也增加。 , o' S0 \  O6 I3 I4 s
        因此,两者对HastelloyB-3在盐酸中的腐蚀影响程度是不同,与盐酸浓度相比,温度是相对更重要的影响因素。因为温度升高使自腐蚀电位升高的同时,也使过钝化电位下降,两者之间的钝化区域必然变窄。而盐酸浓度使自腐蚀电位下降的同时也使过钝化电位下降,钝化区域没有明显变化。即对于Hastelloy B-3,温度对极化曲线的影响程度大于盐酸浓度。
+ G. S8 h2 N1 s4 h% V' J7 z$ q5 O, C# \1 B$ w

' K; r) `( o2 V
作者: laotounihao    时间: 2016-4-14 20:08
太专业了,看不懂




欢迎光临 机械必威体育网址 (//www.szfco.com/) Powered by Discuz! X3.4