机械必威体育网址
标题: 量子计算入门指南:它是如何工作的?现在怎样了? [打印本页]
作者: Insigne 时间: 2019-11-8 11:01
标题: 量子计算入门指南:它是如何工作的?现在怎样了?
谷歌宣称已经实现“量子霸权”,IBM微软也在开发量子计算机,可以说量子计算已经成为当下炙手可热的前沿技术!到底什么是量子计算,介绍与说明很多,今天这篇文章只有2000字,但它简要介绍了量子计算机,想科普一下的同学可以读读。本文编译自medium原题为“Quantum Computing:An Introduction for Programmers”的文章。
' l& H* w8 O& k; A) \5 D
解决复杂问题时,量子计算机并不比人强多少。量子计算机将复杂任务分解成许多简单任务,与人类相比,计算机处理简单任务时快很多,这就是计算机的优势所在。但经典计算机存在限制:任务必须按顺序出现。正因如此,如果任务太复杂,或者数据库太大,想找到解决方案就会耗费很长时间。许多时候问题太庞大,从数学层面看,即使是最强大的超级电脑也没有办法突破序列任务设定的障碍,但量子计算机可以,因为它有一些有趣的特征:叠加、纠缠和干涉。
9 |( r% {5 y, H6 b
/ C7 S% X5 ?0 Y; E8 O
如何工作的
1 \3 g; G% V2 @! [6 {, ^
为了解释这种现象,我们回退一步。当计算机将复杂任务分解成简单小任务时,最简单的任务是什么?就是在两个选项之间选择,比如在A或者B、真或者假、头或者尾之间选择,这些都是二元问题。在计算机中,二进制代码(用1或者0代表)可以转化为计算机电路开关中的“开或者关”。虽然二进制解决方案(信息比特)能以惊人的速度交流信息,但读取时必须一个接一个读取。量子计算机的效率高很多。与比特等价的是量子比特,从本质上讲它相当于一个可以承载可测量信息的粒子。
5 h1 K; d( p* g" L" r1 |
比特必须以一种二元状态或者另一种状态存在,但量子比特可以以量子态(叠加)存在,它可以在同一时间以两种状态存在。量子力学从很大程度上说就是概率游戏,量子比特变成状态A或者B的概率可能是50/50,也可能是70/30、10/90或者其它比例。你可以这样想像:量子比特的位置位于AB之间,或者位于球面的某个位置,球的一端是A状态,另一端是B状态。不论怎样,因为量子有叠加特点,所以它可以同时在多个位置出现。为了找到问题的解决方案,量子比特一次可以沿多条路径前进,但比特一次只能选一条。
) a4 |6 }6 P" A" K: U& n D- z
; x/ z" t/ K5 v. G/ f
迪杰斯特拉算法(Dijkstra)可以帮我们找到抵达目的地效率最高的路径,量子比特没有必要一条一条路探索(经典计算机正是这样做的),它可以同时分析多条路径,以更快的速度找到最棒的路径。当问题越复杂,输入信息越庞大,经典计算机寻找路径的时间就会越长。量子计算不一样,它的效率高很多。
- }' [; n' H* u' K
想挖掘量子叠加的优势,时间很关键,因为量子比特与测量设备接触时叠加特性会受到影响。我们管这种物理法则叫作“观测者效应”。粒子虽然会同时表现出粒子和波的特点,但是当我们观测时只能记录其中一种。到底记录到其中的哪一种取决于观测。所以说,当我们想探知量子比特携带怎样的信息时,就会面临这样的障碍。
; i+ s% X# d: M* }
6 t8 a0 w( u; q1 G8 ~8 P
我们可以利用量子力学的第二个特点来克服 “观测者效应”,这个特点就是“纠缠”(entanglement)。物理家已经证实“纠缠”的存在,也就是两个粒子不管相隔多远,都能联系在一起。现在我们可以操纵几十个量子比特,让它们变成单一的纠缠状态,这样我们就能建立一个网络,它有2的n次方种可能性(n就是网络中量子比特的数量),它们可以协同工作。
. H/ K* g8 j: l( T% F! m
如果量子比特携带相同的信息,如何处理?那就要谈谈量子干涉了,粒子具有波的特点,干涉是波的特征之一。当波峰与波峰相遇,波谷与波谷相遇,彼此互补,效果就会放大,这就是相长干涉。如果波峰与波谷相遇,就会抵消,这就是相消干涉。当超过一个量子比特处于相长干涉状态,它们的效果就会放大,这样就可以传输信息了。
* U9 X2 t) j1 @
现在已经走到了哪一步
8 k' ~5 u; ~2 p7 m$ e. f( u
要想让量子网络真正发挥潜能,还有一些障碍要跨越。虽然与经典计算机相比量子计算机解决问题的速度更快(也就是所谓的量子优势),但是即使是当今最大、最稳定的量子系统,在商业上还是没有实用价值。
! x: ~. w7 O. L o- u
; S J% P; z, k9 _" k
实际上,往纠缠系统中添加量子比特是一件非常难的事,因为网络非常脆弱。1998年,IBM、牛津、加州伯克利大学、斯坦福、MIT成功将一对量子比特组合。20年后,谷歌刷新纪录,将量子比特数量增加到72个。
# Y3 j8 Z7 O, O: H$ ~, l+ e. o
虽然纠缠能从一定程度上解决“观察者效应”这一问题,但是量子状态还是容易被破坏,而且量子特征的持续时间也很有限。量子系统必须在退出叠加状态、进入退相干状态之前找到解决方案,否则就会失败。
" j. F7 x" [3 p) R k: f
外部因素也会导致量子比特退出叠加状态,虽然我们可以增加量子比特的数量,但是量子比特越多,越容易受到外部因素的影响。现在行业一般会用激光器、磁场、超导体创建一个环境,延长量子状态的寿命(寿命一般用毫秒来计算),这样能降低“出错率”。
当出错率下降,观测系统也许能取得突破,我们可以根据观测开发更棒的量子算法。一些行业玩家已经允许客户通过云进入量子计算网络,这样就能让研发变得更容易。
' o' Y( A% R# V
一旦我们可以建立足够庞大、足够稳定的量子比特网各,一旦出错率降得足够低,量子计算机解决经典问题时速度会更快,不只如此,它还可以解决经典计算机解决不了的问题。
8 j8 l9 f7 `7 t' C4 Y+ |% B
到了这一阶段就能实现“量子霸权”。也有人认为“量子霸权”不可能实现,因为受到了物理原则和理论的限制,量子计算不可能走到这一步。
3 L2 T8 ?9 H3 g) }8 v2 W0 q; W0 U
3 U! r/ V; T" G6 v; f/ Z
有何可能性?
- T4 e. X6 c- c0 V8 W6 Q
一旦“量子霸权”真正实现,量子计算可以在许多科研领域派上用场,用来解决复杂问题。在复杂而庞大的数据库上查询时,它的处理速度更快;到时机器学习将会突飞猛进;我们可以模拟更加复杂的分子结构,了解它们的行为,这样就可以在医学领域取得更多突破。
, ~1 ^3 ?5 N0 ?3 T1 {
有了强大的模拟能力,对工业和科技产业也是好事。不过量子计算机无法取代经典计算机,它要与现代机器结合起来用。有了量子计算机,一些领域将会迎来变革。
/ M1 r0 g5 T6 Y- G5 Z
当AI、机器学习与量子计算结合,也许会有很大的突破。网络安全行业也会拥抱量子技术,因为即使是今天最棒的经典加密技术,在量子系统面前也不堪一击。
3 W' Y* [8 J- S; C7 g1 I4 {+ ~2 G
神译局 译者:小兵手
7 r4 d$ u# x6 |8 Q# B
欢迎光临 机械必威体育网址 (//www.szfco.com/) |
Powered by Discuz! X3.4 |