再工业化拯救发达国家?
18世纪下半叶和20世纪初的两次工业革命在使人们变得更加富裕的同时也推动了城市化进程。如今,第三次工业革命已经悄然开始。这次以数字化生产为代表的革命不仅会极大改进现今的生产方式,改变商业及其他领域,更会为发达国家带来重新崛起的机遇。当制造业走向数字化,世界正在加速迈向第三次剧变。拥有了新材料、新工艺、新机器人、新的网络协同制造服务,生产会更加经济、高效、灵活、精简。人类进步的车轮正驶离大批量生产,转向个性化定制生产,低端生产人员需求下降。而这种转变可以将曾经流失到发展中国家的工作机会带回发达国家。
过去的一个世纪里,美国一直引领着全球制造业,但是现在,美国的制造业就业人数下降了三分之一。外包和离岸生产的兴起、复杂供应链的发展让制造商将车间选择了在中国、印度等低工资国家落脚。
受全球金融危机的影响,一些西方的政策制定者正计划着开展“再工业化”,以创造就业机会、避免更多的生产技术流失到国外。因为制造业对一个国家的经济来说非常重要,而且制造企业的回归可以创造新的就业机会。
欧洲模具展是世界最重要的的大展之一。在去年11月的欧洲模具展上,出现了一种新机器:3D打印机。制造零件再也不用敲敲打打,3D打印机通过加盖涂层制造产品,即“添加生产”。记者亲眼见证了一个美国3D制造商用3D打印机造出了一个锤子———金属锤头和干净的木头手柄,与传统的锤子一模一样。
未来的制造业就是这样,以智能软件作为工厂的运行者。油乎乎的锤子和脏兮兮的工作服已经不见踪影。这绝不是天方夜谭,3D打印技术已经用于生产助听器和军用飞机的精密零件。同时,供应链的构成将因此发生巨变,找不到零件的日子一去不复返。
众多非凡的科技成果将日趋融合,包括智能软件,新材料,更加灵巧的机器人,新工艺流程,尤其是三维打印技术和整个基于网页的各种服务。过去的工厂以快速大量制造相同产品为理念。看看福特在汽车外壳涂漆上一句经典语句便知道了,“只要是黑色的,深黑浅黑随你挑。”但是,随着生产少量多批次产品(即接受消费者定制)的成本日益下降,未来的工厂将会把精力放在处理大规模的消费者定制品的订单上面。届时的工厂可能就不是福特的流水线模式,而更像是一个个织布房舍了。
制造业的数字化会使工厂的技术培训更加简单。学员不用再围着机器打转,计算机可以在虚拟环境里模拟生产系统和产品。在英国,华威大学用一个高分辨率的巨型屏幕作为虚拟现实的3D实验室,模拟产品开发。
如今一辆汽车在投产之前很可能早就做成了3D“数字样车”———可以在一个模拟器里试驾,分拆到虚拟工厂里研究如何生产。而且此类软件可以用于公司的其他部门,甚至是负责销售的广告部门。硅谷欧特克软件公司的经理GrantRochelle表示,从数字样车上采集图片非常精良,在新车出厂前就可以用于推销册或电视广告里。
当年,纺纱机淘汰掉手工织布机,福特的流水线工人抢了马蹄铁匠的饭碗,如今,历史稍改面目后重新上演,数字化革命正在撼动传媒和零售业。当看到未来的工厂,很多人会心中打颤。欧洲募集展上,来自世界各地、干净铮亮的高度自动化机床接踵而至。如今,展会上清一色是由穿着全套工作服的新一代技师操作的无油性机械。技师无论男女,只用坐在电脑前操作。智能软件和虚拟现实将会逐渐替代人力操作。
十几年之后,很多汽车生产商的生产率是现在的两倍。大多数工作岗位也从工厂车间转移到附近的办公室,里面坐满了设计师、工程师、IT专家、后勤专家、销售员工和其他专业人士。未来的制造业岗位将会要求员工掌握更多的技术,很多枯燥的,重复性的工作将一去不复返,不需要铆钉产品,不需要铆钉工。
此次工业革命不仅会影响到器件的制造流程,而且会影响到制造地点的选取。以往工厂习惯于将厂址选在劳动力廉价的国家,以此控制劳动力成本。但是劳动力成本因素正在变得越来越不重要。一部499美元的iPad仅仅包括33美元的制造成本,并且最后在中国的组装成本仅仅只有8美元。
越来越多的海外工厂正逐渐搬回到富裕国家,这不是因为中国劳动力成本正在上升,而是因为时下许多公司为了将工厂建在离消费者更近的地方,以使其对需求的变化变得更加敏感。并且现在很多产品变得太过复杂,最好还是让设计师和制造工人在同一个地方工作。
诞生于第二次工业革命的批量生产可以显著降低生产成本,但是在未来,规模生产对3D打印机这类新技术来说影响不大。3D打印机的软件可以设计出任何东西,而且可以无间断运行。装配生产机器的成本跟产量无关;就像2D打印机无论打印多少页不同的文件,每一页的打印成本是相同的,我们只用关心墨盒是不是空了,打印纸够不够。
由于自动铣床实现了自动监测和多方向切割,工厂的生产效率正在飞速提高。日产汽车在英国桑德兰建立的工厂始于1986年,其产量现已达到欧洲第一。1999年,工厂有4594名员工,年产量为271157辆。而去年工厂员工为5462人,产量却达到480485辆。
雇佣的生产工人数量下降使企业的生产成本中劳动力成本所占比例也相应下降。这促使制造商将很多工厂搬回了发达国家。“以前那种人满为患的大工厂时代已经不复存在。”劳斯莱斯的工程技术总监ColinSmith说。
“如果制造业依然重要,那么我们需要保证足够的培训和教育。”劳斯莱斯制造总监Smith先生认为,未来工厂车间里仅存的工作对工人技术的要求会更高。公司的员工都在他的考虑之中,因为很多公司由于经济不景气削减了技术培训的开支。为了找到最好的工人,劳斯莱斯开辟了新的学徒学院,将每年能培训的员工数量翻倍,达到400人。
工业集群是最成功的企业孵化器,其中最著名、最受追捧的范例就是硅谷。促使企业集群的原因有很多:获取技术更加方便,对专业服务的需求,投资者的风险投资更加有目的性等等。通常集群地区附近会有大学城或实验室,因此新想法的诞生后可快速将其投产。在新生产技术的促进下,这种转换变得更加紧密。
“以前只有具备足够的生产能力我们才能探索相应的创新技术,但现在我们已经拥有了这样的技术。”麻省理工学院“创新经济的生产”研究带头人SuzanneBerger说道。在硅谷,这样的事情并不罕见。
波士顿的生物技术集群产区由一些大大小小的制药企业组成,这些企业大部分是被当地医院和大学组织的研究吸引过来的。
举例来说,在一些波士顿的实验室,制药方式已经有了新的飞跃。由麻省理工学院和瑞士诺华制药公司合资的试用生产线开拓了制药行业的连续性生产———原料从机器一头塞进去,药片就从另一边掉出来。该项目负责人StephenSofen说,实验成果非常令人满意———制药涉及的离散操作从22个减少到13个,操作时间(包括运送原料的时间在内)从300小时锐减到40小时,而且制造出的每一粒药都受到监测,以确保它符合要求,免除了每批材料都需测试的繁冗任务。
连续性生产正在彻底改变制药行业。“你的目标可以是成长为区域性的‘小植物’,而非能支持全球市场的‘参天大树’。”StephenSofen说。
这样的小工厂可以更迅速地响应当地需求。这条实验生产线能直接装进一个集装箱里,因此可以被运到任何地方。生产线24小时能生产10米长的药片,也很有可能被用来生产为特定患者量身定制的药物。
过去不少经济学家认为制造业无甚特别,服务业具有同样的生产力和创新力。但是根据最近美国布鲁金斯学会的报告显示,制造业工人的平均收入高于服务业从业者。
而且,与其他公司相比,制造业公司对创新的渴望更加强烈。制造业只贡献了11%美国的GDP,但是美国国内的研发经费的68%都来源于制造业。上述报告称,与服务业相比,制造业的工作薪水更高,这正是创新的巨大动力,从而有助于减少贸易赤字,并为日益成长的“绿色经济”创造机会。
波士顿咨询集团预计,美国从中国进口的运输、计算机、金属制品、机械等产品中10%-30%在2020年时可实现回归美国本土生产,这将为美国每年带来20亿-55亿美元的收入。这为美国大力支持制造业提供了充分的理由。
尽管中国在追赶美国,但美国完成与中国同样的产出使用的工人数量只是中国的10%,麻省理工学院校长SusanHockfield如是说。
重振制造业被发达国家提上议程,而制造业和服务业的界限渐渐模糊———制造业的工作性质正在改变。
但是,制造业究竟能提供多少工作,尤其白领类型的工作?由于技术进步,制造车间需要的工人越来越少,车间内常常显得冷清,而办公室里反而挤满了设计师、IT专家、会计师、物流专家、营销人员、客户关系经理,甚至还有厨师和清洁工。
“我们必须在美国推广最新的制造工艺,尽管车间雇佣工人减少,新技术将催生一个巨大的供应链,可以提供大量的就业机会和丰厚的经济利益。”SusanHockfield说。
很多公司对“再工业化”持乐观态度。通用电气公司全球研究中心高新技术部总管MichaelIdelchik说,“我们正站在新一轮制造业革命的潮头”,他认为,人们对制造业的工作有些短视,推进第三次工业革命的思想可以来自世界各地,制造业是个非常大的就业领域。 沙发, 机械工业是个积累很严重,技术相对封闭的状况,中国很难啊。 数字化革命我们又落后了一程。
创造力被释放的力量,我们可能会被重拳打倒,能还手的寥寥 工业发展的很快啊,这个越来越先进了啊 看中国的历史和世界史,几次工业革命中国都滞后于世界的脚步,这是事实,也许这和中国人的性格和儒家思想的熏陶造成的吧 Special report: Manufacturing and innovation
In this special report
A third industrial revolution
Back to making stuff
The boomerang effect
Forging ahead
Solid print
Layer by layer
All together now
Making the future
Sources & acknowledgements
Reprints
A third industrial revolution
As manufacturing goes digital, it will change out of all recognition, says Paul Markillie. And some of the business of making things will return to rich countries
Apr 21st 2012 | from the print edition
Tweet
OUTSIDE THE SPRAWLING Frankfurt Messe, home of innumerable German trade fairs, stands the “Hammering Man”, a 21-metre kinetic statue that steadily raises and lowers its arm to bash a piece of metal with a hammer. Jonathan Borofsky, the artist who built it, says it is a celebration of the worker using his mind and hands to create the world we live in. That is a familiar story. But now the tools are changing in a number of remarkable ways that will transform the future of manufacturing.
One of those big trade fairs held in Frankfurt is EuroMold, which shows machines for making prototypes of products, the tools needed to put those things into production and all manner of other manufacturing kit. Old-school engineers worked with lathes, drills, stamping presses and moulding machines. These still exist, but EuroMold exhibits no oily machinery tended by men in overalls. Hall after hall is full of squeaky-clean American, Asian and European machine tools, all highly automated. Most of their operators, men and women, sit in front of computer screens. Nowhere will you find a hammer.
In this special report
»A third industrial revolution
Back to making stuff
The boomerang effect
Forging ahead
Solid print
Layer by layer
All together now
Making the future
Sources & acknowledgements
Reprints
--------------------------------------------------------------------------------
Related topics
Europe
United States
United Kingdom
Apple iPhone
Frankfurt
And at the most recent EuroMold fair, last November, another group of machines was on display: three-dimensional (3D) printers. Instead of bashing, bending and cutting material the way it always has been, 3D printers build things by depositing material, layer by layer. That is why the process is more properly described as additive manufacturing. An American firm, 3D Systems, used one of its 3D printers to print a hammer for your correspondent, complete with a natty wood-effect handle and a metallised head.
This is what manufacturing will be like in the future. Ask a factory today to make you a single hammer to your own design and you will be presented with a bill for thousands of dollars. The makers would have to produce a mould, cast the head, machine it to a suitable finish, turn a wooden handle and then assemble the parts. To do that for one hammer would be prohibitively expensive. If you are producing thousands of hammers, each one of them will be much cheaper, thanks to economies of scale. For a 3D printer, though, economies of scale matter much less. Its software can be endlessly tweaked and it can make just about anything. The cost of setting up the machine is the same whether it makes one thing or as many things as can fit inside the machine; like a two-dimensional office printer that pushes out one letter or many different ones until the ink cartridge and paper need replacing, it will keep going, at about the same cost for each item.
Additive manufacturing is not yet good enough to make a car or an iPhone, but it is already being used to make specialist parts for cars and customised covers for iPhones. Although it is still a relatively young technology, most people probably already own something that was made with the help of a 3D printer. It might be a pair of shoes, printed in solid form as a design prototype before being produced in bulk. It could be a hearing aid, individually tailored to the shape of the user’s ear. Or it could be a piece of jewellery, cast from a mould made by a 3D printer or produced directly using a growing number of printable materials.
But additive manufacturing is only one of a number of breakthroughs leading to the factory of the future, and conventional production equipment is becoming smarter and more flexible, too. Volkswagen has a new production strategy called Modularer Querbaukasten, or MQB. By standardising the parameters of certain components, such as the mounting points of engines, the German carmaker hopes to be able to produce all its models on the same production line. The process is being introduced this year, but will gather pace as new models are launched over the next decade. Eventually it should allow its factories in America, Europe and China to produce locally whatever vehicle each market requires.
They don’t make them like that any more
Factories are becoming vastly more efficient, thanks to automated milling machines that can swap their own tools, cut in multiple directions and “feel” if something is going wrong, together with robots equipped with vision and other sensing systems. Nissan’s British factory in Sunderland, opened in 1986, is now one of the most productive in Europe. In 1999 it built 271,157 cars with 4,594 people. Last year it made 480,485 vehicles—more than any other car factory in Britain, ever—with just 5,462 people.
“You can’t make some of this modern stuff using old manual tools,” says Colin Smith, director of engineering and technology for Rolls-Royce, a British company that makes jet engines and other power systems. “The days of huge factories full of lots of people are not there any more.”
As the number of people directly employed in making things declines, the cost of labour as a proportion of the total cost of production will diminish too. This will encourage makers to move some of the work back to rich countries, not least because new manufacturing techniques make it cheaper and faster to respond to changing local tastes.
The materials being used to make things are changing as well. Carbon-fibre composites, for instance, are replacing steel and aluminium in products ranging from mountain bikes to airliners. And sometimes it will not be machines doing the making, but micro-organisms that have been genetically engineered for the task.
Everything in the factories of the future will be run by smarter software. Digitisation in manufacturing will have a disruptive effect every bit as big as in other industries that have gone digital, such as office equipment, telecoms, photography, music, publishing and films. And the effects will not be confined to large manufacturers; indeed, they will need to watch out because much of what is coming will empower small and medium-sized firms and individual entrepreneurs. Launching novel products will become easier and cheaper. Communities offering 3D printing and other production services that are a bit like Facebook are already forming online—a new phenomenon which might be called social manufacturing.
The consequences of all these changes, this report will argue, amount to a third industrial revolution. The first began in Britain in the late 18th century with the mechanisation of the textile industry. In the following decades the use of machines to make things, instead of crafting them by hand, spread around the world. The second industrial revolution began in America in the early 20th century with the assembly line, which ushered in the era of mass production.
As manufacturing goes digital, a third great change is now gathering pace. It will allow things to be made economically in much smaller numbers, more flexibly and with a much lower input of labour, thanks to new materials, completely new processes such as 3D printing, easy-to-use robots and new collaborative manufacturing services available online. The wheel is almost coming full circle, turning away from mass manufacturing and towards much more individualised production. And that in turn could bring some of the jobs back to rich countries that long ago lost them to the emerging world.
from the print edition | Special report
页:
[1]